
ASTORINO

ASTORINO

AS language manual

ASTORINO Manual AS language

2

PREAMBLE

This manual describes the principles and functions of the AS language used in

the "ASTORINO" robot and the related "astorino" software, which is part of the

scope of delivery.

ASTORINO is a training robot that has been developed specifically for educational

institutions. Students can use ASTORINO to try robot-assisted industrial process

automation in practice.

This manual is valid from the robot firmware version 3.7.7 and 3.7.7B

If you have further questions, please contact Kawasaki Robotics support.

Contact:

Kawasaki Robotics GmbH

tech-support@kawasakirobot.de

+49 (0) 2131 – 3426 – 1310

ASTORINO Manual AS language

3

TABLE OF CONTENTS

Preamble .. 2

1 AS LANGUAGE .. 5

1.1 INTRODUCTION .. 5

2 CHARACTERISTICS OF THE AS LANGUAGE ... 6

3 AS EXPRESSIONS .. 7

3.1 NOTATION AND CONVENTIONS... 7

4 POSITION DATA, NUMERIC AND TEXT DATA ... 9

4.1 POSITION DATA .. 9

4.1.1 USE COMPLEX TRANSFORMATION VALUES ..11

4.1.2 USING A FORWARD AND INVERSE KINEMATICS TASK12

4.2 NUMERICAL DATA ..12

4.3 TEXT EXPRESSIONS ...13

5 VARIABLES ..14

5.1 VARIABLE TYPES ..14

5.1.1 GLOBAL VARIABLES ...14

5.1.2 LOCAL VARIABLES..14

5.2 VARIABLE NAMES ...14

5.3 DEFINING POSITION VARIABLES ..14

5.4 ARRAY VARIABLES ...15

5.5 DEFINE POSITIONS USING ON-SCREEN COMMANDS15

6 NUMERIC EXPRESSIONS ...16

7 OPERATORS ...16

8 ROBOT MOVEMENT ...17

8.1 LINEAR INTERPOLATION ...18

8.2 JOINT INTERPOLATION ...18

8.3 CIRCULAR INTERPOLATION ...19

9 PROGRAM EXECUTION FLOW ...20

9.1 SUBROUTINES (SUBROUTINES) ...20

10 AS LANGUAGE FEATURES AVAILABLE IN ASTORINO ..21

10.1 COMMANDS TO CONTROL THE PROGRAM ...21

10.2 VARIABLE POSITION COMMANDS ..25

10.3 SYSTEM MANAGEMENT COMMANDS ..34

10.4 COMMANDS FOR BINARY SIGNALS ..36

10.5 COMMANDS FOR PROGRAMS AND DATA ..40

10.6 COMMANDS TO DISPLAY MESSAGES ...42

11 PROGRAM INSTRUCTIONS ..44

ASTORINO Manual AS language

4

11.1 MOVEMENT INSTRUCTIONS ..45

11.2 MOVEMENT INSTRUCTIONS IN COOPERATION WITH THE CONVEYOR BELT ..54

11.3 SPEED AND ACCURACY CONTROL INSTRUCTIONS60

11.4 PROGRAM CONTROL INSTRUCTIONS ...63

11.5 PROGRAM STRUCTURE INSTRUCTIONS ..66

11.6 INSTRUCTIONS FOR BINARY SIGNALS ...74

12 FUNCTIONS ..76

12.1 FUNCTIONS THAT OPERATE ON REAL VALUES ..77

12.2 MATHEMATICAL FUNCTIONS ...85

12.3 STRING FUNCTIONS ..88

12.4 SERIAL COMMUNICATION ..91

12.5 SERIAL COMMUNICATION FUNCTIONS ...92

12.6 TCP/IP AND UDP COMMUNICATION ...95

12.7 TCP/IP COMMUNICATION FUNCTIONS ...96

12.8 TCP/IP SERVER EXAMPLE ... 102

12.9 TCP/IP CLIENT EXAMPLE .. 103

12.10 UDP COMMUNICATION FUNCTIONS ... 105

12.11 UDP EXAMPLE - SENDING DATA .. 108

12.12 UDP EXAMPLE - RECEIVING DATA ... 109

12.13 COOPERATION WITH EXTERNAL ENCODER ... 110

12.14 SUPPORTED ENCODERS ... 111

12.15 EXAMPLE OF A CONVEYOR BELT APPLICATION .. 112

12.16 EXAMPLE OF A CONVEYOR BELT AND VISION SYSTEM APPLICATION 115

13 SAMPLE PROGRAMS ... 118

13.1 INITIAL CONFIGURATION OF PROGRAMS ... 118

13.2 PALLETIZING .. 119

13.3 PICK&PLACE – AN EXAMPLE OF PALLETIZING ... 121

13.4 SAMPLE I/O PROGRAM ... 123

13.5 SAMPLE SERIAL COMMUNICATION PROGRAM ... 123

14 MANUFACTURER INFORMATION .. 125

ASTORINO Manual AS language

5

1 AS LANGUAGE

1.1 INTRODUCTION
This manual describes the AS* language used in ASTORINO robot controllers. The

purpose of this manual is to provide detailed information about the entire AS

language, its basic uses, data types, robot trajectory control, and all commands

and instructions for effective use of the language. This manual does not contain

robot operating procedures, which are included in the User Manual. Please read

this manual and the other instructions listed below.

The use of the robot is only allowed after careful reading and understanding of the

instructions.

This manual assumes that the robot has been installed and connected in

accordance with the requirements listed in the owner's manual. If you have any

questions or concerns about the operation of the robot, please contact Kawasaki

EMEA.

The version of the AS language used in ASTORINO robots is a simplified version of

the full AS language used in Kawasaki Robotics robots from Kawasaki Heavy

Industries Ltd.

The main differences are:

• Most optional expressions in functions are missing,

• System is single threaded.

Note* AS must be pronounced [az].

1. This manual cannot be considered as a guarantee for systems in which robots

are used. Kawasaki shall also not be liable for any accidents, damages and/or

copyright infringements arising from the use of such systems.

2. It is recommended that all employees responsible for starting, programming,

servicing or controlling the robot are trained in advance in the courses offered by

Kawasaki.

3. Kawasaki reserves the right to make changes, corrections and updates to this

manual without prior notice.

4. Keep the instructions in an easily accessible place. In the event of a change of

workplace of the robot, transfer to another branch or sales, it is mandatory to

attach this instruction to it. If you lose or damage this manual, please contact

Kawasaki.

All rights reserved. Copyright © 2023 Kawasaki.

ASTORINO Manual AS language

6

2 CHARACTERISTICS OF THE AS LANGUAGE

In the AS system, the robot is controlled and works according to the program. The

program is prepared in advance and describes the tasks to be performed. (A

method of reproducing a learned program.)

Instructions available in AS can be divided into two groups: console commands

and program instructions.

Console commands: They are entered in the terminal in the astorino or astorinoIDE

software after the character (>) and executed immediately.

Some of these commands are also used in programs as program instructions.

Program instructions: used in programs to define robot movements, monitor and

control external signals, etc. A program is a set of program instructions.

In this manual, the commands you enter on the screen are called commands, and

the program instructions are called instructions.

The simplified AS language has a number of unique features:

1. Two coordinate systems: the global coordinate system based on the robot and

the coordinate system of the tool associated with the tool mounted at the end of

the arm.

The robot can be programmed in any of these coordinate systems.

2. In teach-in or playback mode, you can move the robot along a linear path. In

teach, the tool orientation can be maintained at the same time.

3. Program names can be arbitrary, and their number is limited only by the

available robot memory.

4. Each movement sequence can be defined as a program.

5. The robot can be programmed using a personal computer running astorino or

astorinoIDE software.

ASTORINO Manual AS language

7

3 AS EXPRESSIONS

This chapter describes the data types and variables used in the simplified AS

language.

3.1 NOTATION AND CONVENTIONS

1. Lowercase and uppercase characters

In order to facilitate the comprehension of the text, this manual adopts the

following rules for the use of lowercase and uppercase letters. All AS keywords

(commands, instructions, etc.) are capitalized. Variables and other data entered

are lowercase. Nevertheless, when entering from the AS terminal, the size of

letters is not important.

2. Spacebar tab stop

There must be at least one space or tab* between the parameter (or statement)

and the parameter. You should also insert a space or tab stop between parameters

not separated by a comma or other bounding character. Redundant spaces or tabs

are ignored by the system.

Note* A parameter is data required to properly execute a command or other

function. For example, for the SPEED command, specify a parameter that specifies

the speed of the robot. If a command or function uses multiple parameters, they

must be separated by a comma or space.

Example

SPEED 50

3. ENTER key

Most program commands or instructions are executed when you press ENTER. In

this statement, the ENTER key is indicated by the symbol ↵.

Numeric values

Values are in decimal unless otherwise noted. Mathematical expressions are used

to determine parameter values in on-screen commands and AS instructions.

Nevertheless, it is important to keep in mind the limitations on these values. The

following are rules for interpreting values in different contexts.

• Distance

It is used to define the length of the robot's movement between two points. The

unit of distance is a millimeter (mm); unit is omitted at the time of entry. Both

negative and positive values are allowed.

ASTORINO Manual AS language

8

• Angles

They describe the orientation of the tool axis and the angular position using 3 Euler

rotation angles (O – A – T) respectively. Both negative and positive values are

allowed, and the maximum permissible angle value is 180

• Axis number

The axis number is the total value from 1 to the number of available axes (a

standard robot has 6 axes). The axes are numbered sequentially, starting from the

base axis. (They are usually referred to as JT1, JT2,.....)

• Signal numbers

Signal numbers are used to identify binary signals (ON/OFF). These are integer

values. The acceptable ranges are given in the table below.

 Standard scope

External output signals
(TCP MODBUS)

Outputs on the robot arm*

1-8
(9-56)

57-58

External input signals

(TCP MODBUS)
Robot arm inputs*

1001-1008

(1009-1056)
1057-1058

Internal signals 2001-2016

*version B of the astorino robot

A negative signal number indicates the OFF status.

• Keywords

In general, you can use any variable name in AS. Nevertheless, certain words are

reserved, such as the names of commands, instructions, etc. and cannot be used

to name position data, as variable names, etc.

ASTORINO Manual AS language

9

4 POSITION DATA, NUMERIC AND TEXT DATA

Three types of data are available in the simplified AS system: Position data (point),

numeric data (real) and text data (string).

4.1 POSITION DATA
Position data is used to determine the position and orientation of the robot in the

workspace. Robot position and orientation refer to the position of the tool center

point (TCP) and tool orientation (coordinates), unless otherwise stated. The

position and orientation of the robot together determine the position of the robot.

The position determines the place where the robot is located and how it is directed,

so when giving motion instructions, both data are determined.

1. The robot moves the tool center point (TCP) to the specified position.

2. The coordinate system of the robot tool is rotated to a specific orientation.

Position data is determined by specifying displacement values in axes or

transformation coordinates:

1. Axis displacement values

The position of the robot is determined by specifying the linear or angular

displacement in each of the coordinate systems of the robot axis. Values for

angular axes are given in degrees, and values for linear axes are given in

millimeters. After performing the specified movements in the axes, the position

and orientation of the center point of the tool are clearly defined.

Example

The axes numbers are designated as JT1,..., JT6, and the displacement values are

given under the axle numbers.

 JT1[°] JT2[°] JT3[°] JT4[°] JT5[°] JT6[°]

#pose= 0.00, 33.00, -15.00, 0.00, -40.00, 30

2. Transformation values (X,Y,Z,O,A,T)

These values describe coordinate transformations relative to the reference

coordinate system. Unless otherwise stated, the transformation values of the tool's

coordinate system relative to the robot's underlying coordinate system are given.

The position is determined by XYZ values relative to the base coordinate system,

and orientation by the Euler angles (O-A-T) of the tool relative to the base

coordinate system

ASTORINO Manual AS language

10

Example

X Y Z O A T

 X[mm] Y[mm] Z[mm] O[°] A[°] T[°]

pose= 0.00, 1434.00, 300.00, 0.00, 90.00, 70.00

If the robot has more than six axes, the position of the additional axis is given

together with the transformation values.

Example

X Y Z O A T JT7

 X[mm] Y[mm] Z[mm] O[°] A[°] T[°] JT7[mm]

pose= 0.00, 1434.00, 300.00, 0.00, 90.00, 70.00, 1000.0

Using axis displacement values and transformation coordinates has some

advantages and disadvantages. Choose one of these methods, as appropriate.

 Axis displacement values Transformation coordinates

Advantages • High precision of reproduction

and no ambiguity of the robot

configuration in a given position

• The center of the tool's

coordinate system in playback

mode does not change even

after the tool is replaced. (Zero

tool coordinate system offset).

• Ability to use relative coordinates

(e.g. coordinates in the object

system).

• Convenience of processing, as

the data is given as XYZOAT

values.

Disadvantages • The tool center point (TCP)

changes when the tool changes

(the zero tool base remains the

same).

• Unable to use relative

coordinates (e.g. item

coordinates)

• The coordinates change

according to the transformation

coordinates of the baseline or

tool layout, so full traceability is

required to assess the safety

impact of any change

Recommended

uses

• Defining the starting position in

the program

• Setting the robot configuration

just before or in the position

described by the transformation

coordinates

• Use for other frequently used

items

• Describing relative coordinates,

such as object coordinates

• Describe the position to change

using numeric values and the

SHIFT function

• Describe the position to be

changed based on the

information provided by the

sensor

For the articulation offset variable, define a variable with a name beginning with

#.

For a transform value variable, define a variable without the # character.

ASTORINO Manual AS language

11

4.1.1 USE COMPLEX TRANSFORMATION VALUES

Transformation values between two coordinates can be expressed as a

combination of transformation values between two or more transition

coordinates. This can be called the relationship of transformation values or the

relative values of the transformation.

For example, suppose "plate" is the name of a variable defined by transformation

values relative to the base coordinates that describe the coordinates at the table

where the object is located.

Then, if the position of the object relative to the "plate" position is defined as

"object", the relationship of the transformation values of the object relative to

the coordinates of the robot base can be described as "plate+object".

In the following example, even if the position "plate" changes (e.g. the table

moves), only the transformation values for "plate" will need to be changed, and

the rest can be used unchanged.

If you repeatedly use the value of a compound transformation, use the POINT

command to reduce the time it takes to calculate the value of the compound

transformation. For example, to approach the "pickup" position, and then to go

to this position, you can type:

POINT x = plate+object+pickup - calculate the target pose

JAPPRO x, 100 - approaching 100 mm above target

LMOVE x - linear movement to the target

ASTORINO Manual AS language

12

4.1.2 USING A FORWARD AND INVERSE KINEMATICS TASK

The AS language allows you to use the forward and inverse kinematics to

calculate point variables. The system allows you to convert axes displacement

point variables into transformation point variables and works in the opposite

direction.

Example:

POINT P0 = #P0 conversion of axes displacement variable into a

transformation variable

POINT #P0 = P0 conversion of transformation variable into axes

displacement variable

4.2 NUMERICAL DATA
In the AS system, the use of numeric values and expressions is allowed. A numeric

expression is a value expressed in numbers, variables, and operators and

functions. Numeric expressions are used not only in mathematical calculations, but

also as parameters for console commands and program instructions.

For example, the DRIVE command requires three parameters, the axis number,

the amount of displacement and the speed. These parameters can be specified as

numeric values or expressions, as shown in the following example:

DRIVE 3,45,75 Shift of axis No. 3 by angle 45, at a speed

of 75%

DRIVE joint, (start+30)/2, 75 If joint=2, start=30, axis 2 will be shifted

by +30 at a speed of 75%.

Numeric values in the AS system are divided into three types:

Do not change the order in which the relative transformation is expressed. For example, if the

transform value of the position variable "b" is defined relative to the transform value of the

position variable "a", "a+b" gives the expected result, but "b+a" gives a different result.

For robots with 7 axes, the following points should be noted:

• Using the POINT command, note the JT7 value. For example, in POINT, p=p1+p2, the

JT7 value assigned to "p" would be the JT7 value for "p2".

• When assigning a specific value to JT7, add "/7" to the end of POINT. For example,

POINT/7 p = TRANS(0,0,0,0,0,0,0,value) assigns a "value" to the variable "p" as the

value of JT7.

[NOTE]

ASTORINO Manual AS language

13

1. Real numbers

Real numbers can be integers or fractions. Added and negative values between

−3.4 E+38 and 3.4 E+38 (−3.4×1038 to 3.4×1038) and zero are allowed.

Actual values without fractions are whole values. The allowed range is

−16,777,216 to +16,777,215. Integer values are entered in the decimal system.

The character separating the integer from the fractional part is the dot "." E.g. 8.5

2. Boolean values

Boolean values can have only two states: TRUE and FALSE. A value of 1.0 is

equivalent to TRUE and a value of 0 (or 0.0) is equivalent to FALSE. TRUE and

FALSE are reserved words in AS.

Boolean value True = TRUE, 1.0

Boolean value False = FALSE, 0.0

4.3 TEXT EXPRESSIONS
Text expressions can consist of numbers, variables, functions, and other text

expressions linked by operators. They can be used as parameters for console

commands or instructions. The interpretation of values depends on the context in

which the expression is used. The text expression is preceded by the character

"$", e.g. $TEKST = "HELLO WORLD"

Text expressions can be added, for example , $TEST = "HELLO " + "WORLD"

ASTORINO Manual AS language

14

5 VARIABLES

In simplified AS, you can assign names to position, numeric, and text data. These

are called variables. Variables that contain position data are referred to as position

variables, respectively, actual. When a variable is defined, it is stored in memory

along with the value assigned to it. You can then use such a variable in the

program.

5.1 VARIABLE TYPES

5.1.1 GLOBAL VARIABLES

Global variables are seen within the entire robot system, they can be used in the

terminal and various programs.

E.g. repetitions = 10

5.1.2 LOCAL VARIABLES

Local variables are seen within only one robot program, they cannot be used in

the terminal. The variable is deleted when the program finishes. They are defined

by adding a period (".") before the variable name

E.g. .num = 10

5.2 VARIABLE NAMES
Variable names must begin with an alphabetic character and can contain

characters, letters, and numbers. The use of both lowercase and uppercase

characters is allowed.

The following are examples of disallowed variable names:

3p2a first character cannot be a number

part#2 The "#" character cannot be used in the middle of a variable

name.

random Word reserved

5.3 DEFINING POSITION VARIABLES
Variables that contain position information are called position variables. An item

variable is defined only if its name and value are specified. If you do not specify a

value, it remains undefined, and executing the program with an undefined variable

generates an error.

In the simplified version of AS, you can use two types of position variables.

• Variables named P1.. P99 and #P1.. #P99

• Variables with any name, e.g. download.

ASTORINO Manual AS language

15

Position variables are a very convenient solution for many reasons:

You can use the same position data many times without reteaching the position

each time.

The defined position variable can be used in various programs.

A defined position variable can be used to define another position.

You can enter numeric values directly to determine the position, instead of very

time-consuming position teaching.

Item variables can have any name, which increases the readability of programs.

5.4 ARRAY VARIABLES
Variables of all types: numeric, text and point variables can be used as arrays.

Arrays are defined by adding the character "[" after the variable name, then

specifying the index of the array and ending with the sign "]". Example:

x[0] = 10

x[1] = 12

x[2] = x[0] + x[1]

POINT test[0] = P0

LMOVE test[0]

$text[0] = "Hello"

$text[1] = "World"

5.5 DEFINE POSITIONS USING ON-SCREEN COMMANDS
1. The HERE command used in the terminal allows you to save the current

position of the robot in a variable position with a given name.

2. The POINT command used in the terminal allows you to assign new data

to a position variable, whether by function or other position variable.

Example 1: Using axis angle values

The variable name must begin with # to distinguish it from transformation

coordinates. After the command, the displacement values in the axes for the

current position are displayed:

> HERE #pose ↵

Example 2: Using transformation coordinates

>HERE pose ↵

• Overwrite the value of an already defined variable

>POINT pose = P1 ↵

ASTORINO Manual AS language

16

6 NUMERIC EXPRESSIONS

Numeric expressions can consist of digits, variables, functions, and other numeric

expressions connected by operators. All numeric expressions determined by the

system are actual values. Numeric expressions can always be specified in place of

numeric values. They can be used as parameters for console commands or

instructions. The interpretation of values depends on the context in which the

expression is used. For example, an expression given in place of a logical value

has a Boolean value of False if it evaluates to 0 or True if it evaluates to 1.

7 OPERATORS

You can use arithmetic and logical operators in expressions. All operators use two

values and return one result value. The table below provides a list of operators.

Arithmetic operators

+

−
*
/

^
MOD

Addition

Subtraction or negation
Multiplication

Division

Exponentiation
The rest from splitting

Comparison operators

<

<=, =<
==
<>

>=, =>
>

Smaller

Less than or equal to
Equal

Different

Greater than or equal to
Bigger

Boolean operators

AND

NOT
OR
XOR

Logical AND

Logical complement
Logical OR

Logical conjunction OR

ASTORINO Manual AS language

17

8 ROBOT MOVEMENT

Acceleration for the second segment begins after the execution of the first segment

is completed, when the current position is at the target point. The slope of the

speed rise is determined by the ACCEL parameter and the braking edge by the

DECEL parameter.

Astorino robot can move in three different ways. These ways are called

interpolations. We can distinguish:

• Linear interpolation

• Joint interpolation

• Circular interpolation

In an anthropomorphic robot arms (6 axis) there exists some positions that are

called singularities. A singular position where problem of structurally uncontrollable

position might occur exists when for example JT4 and JT6 are parallel to each

other, or JT1 and JT6 are parallel to each other. These configurations return

multiple mathematical solution of inverse kinematics and therefore the motion

through these points might be unpredictable and introduce a lot of very fast joint

movements.

Examples of singular positions

JT4 and JT6 are parallel JT1 and JT6 are parallel

ASTORINO Manual AS language

18

8.1 LINEAR INTERPOLATION
In this type of interpolation robot moves from the current position to the

destination in that way that the TCP moves along straight line in a 3D space.

8.2 JOINT INTERPOLATION
In this type of interpolation robot moves form the current position to the

destination in that way that all axes end motion at the same time. This

movement creates an unpredictable TCP path in a 3D space. This motion in not

effected by singularity points.

ASTORINO Manual AS language

19

8.3 CIRCULAR INTERPOLATION
In this type of motion robot moves from the current position to the destination

through the middle point in that way that the TCP creates a 3D circular line in a

3D space.

ASTORINO Manual AS language

20

9 PROGRAM EXECUTION FLOW

Program instructions are executed in order from top to bottom of the program.

The CALL statement calls and executes another program, but it does not change

the flow order. When you execute the RETURN statement or the end of the

subroutine, processing returns to the calling program and resumes from where it

exited.

The WAIT statement stops the program before proceeding to the next step until

the specified condition is true. The HOLD statements stop the program at the

stage where the instructions are.

9.1 SUBROUTINES (SUBROUTINES)
A main program can be temporarily paused, and another program, called a

subroutine, can be called and executed. By using the subroutine, you can

transform the program into a modular structure that is easier to understand. For

example, create one program called "INIT" that you can then call at the

beginning of other programs. In the "INIT" program, you can specify speeds,

reset signals and variables.

Example:

.PROGRAM MAIN

 CALL INIT

 LMOVE P1

.END

.PROGRAM INIT

 SPEED 50 MM/S ALWAYS

 X = 10

 SIGNAL -1

.END

ASTORINO Manual AS language

21

10 AS LANGUAGE FEATURES AVAILABLE IN

ASTORINO

10.1 COMMANDS TO CONTROL THE PROGRAM

SPEED Sets the monitoring speed.

PRIME Prepares the program for execution

EXECUTE Executes program

HOLD Stops program execution

CONTINUE Resumes program execution

DO Executes a single motion instruction

ASTORINO Manual AS language

22

SPEED monitoring speed

Function

Sets the monitoring speed, expressed as a percentage.

Parameter

Monitoring speed

Sets the speed as a percentage. If this parameter is set to 100, the speed will be

set to 100% of the maximum speed. If this value is equal to 50, the speed will be

set to half the maximum speed.

Explanation

The robot movement speed is the product of the monitoring speed (set with this

command) and the program speed (set in the program using the SPEED

instruction). For example, if the monitoring speed is set to 50 and the speed in the

program is set to 60, the maximum robot speed will be 30%.

The default monitoring speed value is 80%. This command does not affect the

speed of the movement that is currently being executed. The newly entered speed

is applied when the current movement and scheduled movement are completed.

Example

If the program speed is set to 100%:

>SPEED 30 ↵ The speed of the robot's movement is set to 30 % of the

maximum speed.

>SPEED 50 ↵ The robot movement speed is set to 50 % of the maximum

speed.

>SPEED 100 ↵ The speed of the robot's movement is set to 100 % of the

maximum speed.

>SPEED 200 ↵ The speed of the robot's movement is set to 100 % of the

maximum speed.

If the product of the monitoring speed and the speed of the

program is higher than 100, the maximum robot speed is

automatically set to 100%.

WARNING

ASTORINO Manual AS language

23

PRIME program name

Function

It prepares the system in such a way that the program can be executed using the
CYCLE START button. This command used alone does not execute the program.

Parameter

Name of the program
Selects the program to be prepared for execution.

Explanation

This command prepares only the system for execution. It does not execute the
program. After preparing the system by the PRIME command, the program can be

executed using the EXECUTE command. The program can also be executed using
the CYCLE START button.

EXECUTE program name

Function

Executes the robot program.

Parameter

Name of the program

Selects the program to execute.

Example

>EXECUTE test ↵ Executes a program called "test" continuously. (The

program executes continuously until it stops, such as
using the HOLD command or until an error occurs.)

HOLD

Function

Immediately stops the execution of the robot program.

Explanation

The movement of the robot is immediately stopped. Unlike the use of the

EMERGENCY STOP switch, there is no sudden stop of motion.

CONTINUE

Function

Resumes execution of the program stopped by the HOLD statement.

ASTORINO Manual AS language

24

DO movement instruction

Function

Executes a single program instruction. (Some program instructions cannot be used
with this command.)

Parameter

Movement instruction
Executes the specified program instruction.

Explanation

Program instructions are typically typed into the program and executed as program
steps.

Nevertheless, the DO command allows you to execute a single instruction without
the need to create a program specifically for this purpose.

Example

>DO JMOVE safe ↵ Transition of the robot to the "safe" position in motion

with axial interpolation.

>DO HOME ↵ Moving the robot to the home position in motion with

axial interpolation.

ASTORINO Manual AS language

25

10.2 VARIABLE POSITION COMMANDS

HERE Assigns the current position to the specified variable

POINT Defines the position variable.

POINT/X Specifies the X value of the position variable.

POINT/Y Specifies the Y value of the position variable.

POINT/Z Specifies the Z value of the position variable.

POINT/OAT Specifies the OAT values of the position variable.

POINT/O Specifies the value of O variable position.

POINT/A Specifies the A value of the position variable.

POINT/T Specifies the T value of the position variable.

POINT/7 Specifies the value of 7 of the position variable.

POINT/8 Specifies the value of 8 of the position variable (Conveyor 1).

POINT/9 Specifies the value of 9 of the variable position (Conveyor 2).

DECOMPOSE Allocates elements of the position variable to an array

variable.

FRAME Creates a new coordinate system reference point

NULL Returns zero transformation

TRANS Returns the coordinates of the transformation, calculated from

the given components

#PPOINT Returns axis displacement values calculated from the specified

elements

SHIFT Returns the transformation coordinate obtained by moving the

original position

RX,RY,RZ Returns a transformation value expressing rotation about an

axis

ASTORINO Manual AS language

26

HERE position variable

#HERE position variable

Function

This command assigns the current position to the specified position variable. The
position can be expressed in transformation values or axis angles.

Parameter

Position variable
The value of a variable can be given using coordinates of transformations or axis

shifts.

Explanation

Position can be expressed in transformation values, axis angles, or complex

transformation values.

The values of the variable are displayed on the terminal
If you enter a variable by specifying axis angles (the variable name begins with
#), the axis values for the current position are displayed. If the variable contains

transformation coordinates, XYZ OAT values are displayed. XYZ values determine
the location of the endpoint (TCP) of the coordinate system relative to the base

coordinate system. OAT values determine the orientation of the tool's coordinate
system.

Example

>HERE #pick ↵ Assigns the current robot position to the variable

"#pick" (axis angles).

>HERE place ↵ Assigns the current position of the robot to the

variable "place" (transformation coordinates).

>POINT PICK = HERE ↵ Assigns the current position of the robot to the

variable "pick" (transformation coordinates).

ASTORINO Manual AS language

27

POINT position variable name=position values

Function

Allocates position information to the right of "=" to the position variable to the left

of "=".

Parameter

1. Name of the position variable

Specifies the name of the position variable to specify (can be specified in axis shift

or transform values).

2. Position values

A point variable or function that contains or returns transformation values or

angles on axes.

Example:

POINT TEST = P0

POINT #P0 = TEST

POINT TEST[0] = TRANS(0,0,0,0,0,0,0)

POINT #TEST = #PPOINT(0.90,90,45,0,0)

If the types of values to the right and left of the "=" sign differ, this command

works as follows:

1. POINT trans=#joint (transformation values = axis angle Values)

The axis offset values on the right are converted to transformation values

and assigned to the variable on the left.

2. POINT #joint = trans (axis angle Values = transformation values)

The transformation values on the right are converted to axis angles and

assigned to the variable on the left. The transformation values are

transformed by the robot in its current configuration.

[NOTE]

ASTORINO Manual AS language

28

POINT/X name of pose variable =position values

POINT/Y name of pose variable =position values

POINT/Z name of pose variable =position values

POINT/OAT name of pose variable =position values

POINT/O name of pose variable =position values

POINT/A name of pose variable =position values

POINT/T name of pose variable =position values

POINT/7 name of pose variable=position value

POINT/8 name of pose variable=position value

POINT/9 name of pose variable=position value

Function

Allocates the position information to the right of "=" to the position variable to the

left of "=".

Parameter

1. Name of the pose variable

Specifies the name of the position variable to be specified (can be specified in axis

displacement values, transform values, or complex transformation values).

2. Position values

If not specified, the "=" character is omitted.

Explanation

Allocates only specific elements (X, Y, Z, O, A, T) transformation values.

Example:

POINT/OAT a1 = a2 point a2 values will be assigned to the OAT value of

point a1

ASTORINO Manual AS language

29

DECOMPOSE array variable[item number] = position variable

Function

Saves each element of the specified position variable as an element of an array

variable (X, Y, Z, O, A, T for the transformation value; JT1, JT2, JT3, JT4, JT5,

JT6 for axis angle values).

Parameter

1. Array variable - name of array variable

Specifies the name of the array variable in which to store the values of each

element.

2. Item number

Specifies the first array index in which to save items from the variable position.

3. Position variable

Specifies the name of the position variable from which to extract each element

(transformation values, axis offset values).

Example

DECOMPOSE X[0] = part Allocates elements of the transformation

value "part" to the first 9 elements in the

array variable " x".

DECOMPOSE ang[4] = #pick Allocates the elements of the value of the

variable of point "#pick" to index number 4

and to the indexes following it in the array

variable "ang".

For example, in the statement above, if the values of #pick are equal to 10, 20,

30, 40, 50, 60, then:

ang[4]=10 ang[7]=40

ang[5]=20 ang[8]=50

ang[6]=30 ang[9]=60

ASTORINO Manual AS language

30

FRAME (pose 1, pose 2, pose 3, pose 4)

Function

Returns the transformation values of FRAME coordinates relative to BASE

coordinates. Note that only the translational transform components of position

variables are used to calculate the coordinates of the new FRAME.

Parameter

Value of position variable 1, value of position variable 2

They specify transformation values to determine the direction of the X-axis. The

X-axis of the FRAME coordinates is set to pass through these two positions. The

positive direction of the X-axis is set from the position determined by the

transform values of variable 1 to the position determined by the transformation

of the value of variable 2.

Value of position variable 1, value of position variable 3

They specify transformation values to determine the direction of the Y axis. The

Y-axis of the FRAME coordinates is set to pass through these two positions. The

positive direction of the y-axis is set from the position determined by the

transform values of variable 1 to the position determined by the transformation

of the value of variable 3.

Value of position variable 4

Specifies a transform value variable to determine the origin of FRAME

coordinates that equals the X,Y,Z values returned by this function.

Explanation

POINT F1 = FRAME(O1,X1,Y1,O1)

ASTORINO Manual AS language

31

POINT F2 = FRAME(O1,X1,Y1,O2)

REMARK!

Pay attention to the points when defining a new FRAME.

POINT F = FRAME(a1,a2,a3,a1)

The Y and Z axes in the above examples are directed in opposite directions

depending on where point a3 is taught. Therefore, if point a3 is taught too close

to point a1, this may cause an erroneous calculation of the Z-axis of the system.

For a better result of calculations, the points a2 and a3 should be taught far from

point a1 (at least 50mm).

NULL

Function

Returns zero point transformation

Explanation

Returns a point whose coordinates are all zeros (Z=Y=Z=0, O=A=T=0)

Example

POINT new = SHIFT(NULL BY 100,0,0)

Dist = DISTANCE(NULL,P1)

ASTORINO Manual AS language

32

TRANS (var X, var Y, var Z, var O, var A, var T, var JT7)

Function

Returns the transformation coordinates for the specified components that specify
shifts and rotations. The JT7 component may be omitted.

Parameter

Component X, Component Y, Component Z
Components of the translations X, Y, Z. If these parameters are not specified, the
values 0 are assumed.

O Component, A Compoment, T Component
Specifies the rotation components O, A, T. If these parameters are not specified,

the values 0 are assumed.
JT7 component

Specifies the offset component of the JT7 axis in mm, if this argument is not
provided, the values 0 are used.

Explanation

This statement calculates the transformation coordinates based on the values
specified by the parameters. New transformation coordinates can be used to define
position variables, complex transformation coordinates, or in motion statements.

This function is very useful in combination with the DECOMPOSE.

Example

POINT temppos = TRANS(a, b+100,c, d, e, f)

#PPOINT (JT1, JT2, JT3, JT4, JT5, JT6, JT7)

Function

Returns axis angles values.

Parameter

JT1, JT2, JT3, JT4, JT5, JT6, JT7
Specifies the value of each angle (in degrees or mm).

Explanation

This function returns axis displacement values. These values represent the
displacements in each axis, from axis 1 to the last axis (not necessarily the sixth).

Example

POINT #temp = #PPOINT (0, a, a/2, 0, 0,0)

The #PPOINT function uses only axis angle Values . For this

reason, always at the beginning of this function you should

include the prefix "#".

WARNING

ASTORINO Manual AS language

33

SHIFT(transformation variable BY var X, var Y, var Z)

Function

Returns the position obtained by shifting a variable specified by transformation
coordinates shifted by a given distance relative to each axis of the BASE coordinate
system (X,Y,Z).

Parameter

Transformation coordinate variable
A transformation coordinate variable that specifies the position to be shifted.

X offset, Y offset, Z offset

Offset values in the X, Y, Z axes of the BASE coordinate system.

Explanation

The X, Y, and Z offset values are added to the X, Y, Z displacement components

of the specified variable specified by the transformation coordinates. The result is
returned as transformation coordinates.

Example

If the variable of the coordinates of the transformation x has values
(200,150,100,10,20,30), then after executing the statement

POINT y=SHIFT(x BY 5, -5, 10)

The position X is moved by the specified values to the position
(205,145,110,10,20,30), which is then assigned to the variable Y.

RX (angle)

RY (angle)

RZ (angle)

Function

Returns transformation values that represent rotation around the specified axis.

Parameter

Angle
Specifies the rotation value in degrees.

Explanation

X, Y, Z in this function represent the coordinate axes. Returns the rotation value
around the specified axis. Translational values are not returned by this function

(X, Y, Z = 0).

Example

POINT x_rev =RX(30) Returns a transformation value representing a 30°

rotation around the X axis and assigns a value to
"x_rev".

ASTORINO Manual AS language

34

10.3 SYSTEM MANAGEMENT COMMANDS

TOOL Displays the TOOL layout currently in use

POINT Displays point data

SETHOME Configures the home position.

ERESET Deletes error

ZZERO Starts the process of resetting the axle

ZPOWER Turns drives on or off

CPUTEMP Displays the current CPU operating temperature

FREE You knowthe background of currently free RAM

Z_OUTSOURCE Sets the operating mode of 3.3V outputs

Z_INPULL Sets the operating mode of the inputs 3.3V

Z_USER Sets the user access mode

STATUS Displays the current status of the robot

WHERE Displays the current position of the robot

ASTORINO Manual AS language

35

TOOL

Function

The command displays the transformation coordinates for the tool, specifying the
position of the tool's coordinate system relative to the zero coordinate system.

Example

>TOOL ↵ entered in Terminal will display:

>X[mm]: 0.000 Y[mm]: 0.000 Z[mm]: 40.000
>O[deg]: 0.000 A[deg]: 0.000 T[deg]: 0.000

SETHOME position

Function

This command sets and displays the HOME position.

Parameter

Position

Point variable or HERE command (Defines the current position as the HOME
position.)

Example

>SETHOME HERE ↵ Configures the current entry as the HOME item.

ERESET

Function

Deletes the error. The operation of this command is identical to pressing the RESET

button in astorino or astorinoIDE software.

Explanation

When the ERESET command is executed, a RESET signal is sent. However, this

command has no effect if an error occurs at the same time. The function can also
be used in abbreviated form by typing "ERE".

STATUS

Function

Displays the current status of the robot in the terminal.

WHERE

Function

Displays the current position of the robot in the axial and transformation angles

(XYZOAT JT7)

ASTORINO Manual AS language

36

10.4 COMMANDS FOR BINARY SIGNALS

RESET Turns off all external I/O signals

SIGNAL Turns output signals on (or off)

PULSE Sets the signal status for a specified time

DLYSIG Sets the signal status after a specified time

OPENI Sets predefined signals to a specific state

CLOSEI Sets predefined signals to a specific state

BITS Sets the signal group to a specified value (max. 16 signals)

ASTORINO Manual AS language

37

RESET

Function

Turns OFF all external output signals. This command does not affect dedicated
signals.

SIGNAL signal number1,..,signal number6

Function

Turns specific external or internal output signals ON or OFF.

Parameter

Signal number1..6
The number of the external output signals or internal signals. A positive number
turns ON the signal, and a negative number turns OFF the signal. Up to 6 signal

number can be listed at the same time. Not all 6 numbers need to be typed.

Explanation

The signal number determines whether it is external or internal.

Acceptable signal numbers

External output signals 1 – 8
MODBUS 9-56 signals
Signals on the JT3 57-58 axle arm (Robot version B)

Internal signals 2001−2016

External input signals must not be given
If the signal number is a positive number, the signal is turned on; If it is a negative
number, the signal is turned off.

Example

>SIGNAL -1 ↵ Switching off external output signal 1,

>SIGNAL -1,2 ↵ Switching off external output signal 1 and ON output 2

>SIGNAL 2005 ↵ Activation of internal signal 2005,

>SIGNAL -res ↵ If the variable "res" has a positive value, the output

signal determined by this value is set OFF.

Note that this command disables all signals except those

listed above, even in playback mode.

WARNING

ASTORINO Manual AS language

38

PULSE signal number, time

Function

Turns ON a specified external output signal or internal signal for a specified period

of time.

Parameter

Signal number

Sets the numbers of external output or internal signals. Selecting a dedicated

signal causes an error.

Acceptable signal numbers

External output signal 1 - 58

Internal signal 2001-2016

Time

Sets the signal issuance time (in seconds). If not specified, it will be automatically

set to 0.0 seconds.

Example

PULSE 3, 0.4 Turns a 3rd output ON for 0.4s

DLYSIG signal number, time

Function

Sends the specified signal after a specified period of time.

Parameter

Signal number

Dials the number of the external output signal or the internal signal. If the signal

number is positive, the signal is turned on; If it is negative, the signal is turned

off. Selecting a dedicated signal causes an error.

Acceptable signal numbers

External output signal 1 - actual number of signals

Internal signal 2001-2016

Time

Specifies the delay time in seconds for signal output.

Example

DLYSIG 1, 0.8 Puts signal 1 in the high state after 0.8s from the

instruction call.

ASTORINO Manual AS language

39

OPENI

Function

The function works only in version B of the robot, it allows one command to put

output 57 in high state and output 58 in low state.

CLOSEI

Function

The function works only in version B of the robot, it allows one command to put

output 58 in high state, and output 57 in low state.

BITS initial signal number, number of signals = decimal value

Function

Distributes a group of external output signals or internal signals in a binary pattern.

Signal states are set as ON/OFF according to the binary equivalent of the specified

decimal value.

Parameter

Starting signal number

Specifies the first signal to set the signal state.

Acceptable signal numbers

External output signal 1 - actual number of signals

Internal signal 2001-2016

Number of signals

Specifies the number of signals to be set to ON/OFF. The maximum number

allowed is 16.

Decimal value

of the specified signal number) is issued, and the remaining bits are Specifies the

decimal value used to set the desired ON/OFF signal states. The decimal value is

converted to binary notation, and each bit of the binary value sets the state of the

signal, starting with the least significant bit. If the binary notation of this value has

more bits than the number of signals, then only the state of the given number of

signals (starting with ignored.

Example

BITS 9.16 = 12082 Issues a 9 to 16-bit value of 12082 on signals

ASTORINO Manual AS language

40

10.5 COMMANDS FOR PROGRAMS AND DATA

DELETE Removes a program or point from the robot's memory

DELETE/P Removes the program from the robot's memory

DELETE/L Deletes a point from the robot's memory

ASTORINO Manual AS language

41

DELETE program name/point name

DELETE/P program name

DELETE/L point name

Function

Deletes specified data from the robot's memory

Parameters

/P – program name, /L point name

Example:

> DELETE TEST↵ Removes the test program, if the test program is not

found, it tries to delete a point variable named test

> DELETE/L P1↵ Removes point P1 from robot memory.

ASTORINO Manual AS language

42

10.6 COMMANDS TO DISPLAY MESSAGES

PRINT Displays data in a terminal

TYPE Displays numeric type data in a terminal

ASTORINO Manual AS language

43

PRINT data to display

Function

Displays the desired data on the terminal.

Parameter
Data to display

Select one or more of the following options.
(1) String, e.g. PRINT $TST

(2) Actual type expression (value is first calculated and then displayed, e.g. PRINT
SIN(30)

Example

In this example, the value of the real variable "i" is equal to 5

>PRINT and ↵
The display should look like this:
>5:00 a.m.

>PRINT "HELLO"
>HELLO

>$TEMP = "MY TEXT" ↵
>PRINT $TEMP↵
>MY TEXT

TYPE data to display

Function

Displays numeric type data (numbers) on the terminal.

Parameter

Data to display
Select one or more of the following options.
(1) String, e.g. TYPE TST

(2) Actual type expression (the value is first calculated and then displayed, e.g.
TYPE SIN(30)

Example

In this example, the value of the real variable "i" is equal to 5

>TYPE i ↵
The display should look like this:
>5.00

ASTORINO Manual AS language

44

11 PROGRAM INSTRUCTIONS

A program statement consists of a keyword expressing the command and
a parameter(s), as shown in the example below.

Example

 Keyword Parameter

LAPPRO position variable, distance

 The keyword and parameter must be separated by a space.

ASTORINO Manual AS language

45

11.1 MOVEMENT INSTRUCTIONS

TOOL Defines the pose of TCP

JMOVE Robot movement with joint interpolation

LMOVE Robot movement with linear interpolation

XMOVE Linear interpolation robot movement with interruption

DELAY Stops the movement of the robot for a specified period of time

BRAKE Stops the movement of the robot

JAPPRO Approach the destination with joint interpolation

LAPPRO Approach the destination with linear interpolation

JDEPART Leaves the current position with joint interpolation

LDEPART Leaves the current position with linear interpolation

HOME Moves to the home position

DRIVE Moves in the direction of a single axis

DRAW Move a specified distance in the direction of the X, Y, Z axis of

the global coordinate system

TDRAW Move a specified distance in the X, Y,Z direction of the tool's

coordinate system

C1MOVE Circular interpolation movement

C2MOVE Circular interpolation movement

ALIGN Aligns the robot orientation (TOOL z-axis) to the nearest BASE

axis

ASTORINO Manual AS language

46

TOOL layout number tool

TOOL transform value variable

Function

This command defines transformation coordinates for the tool, specifying the
position of the tool's coordinate system relative to the zero coordinate system.

Parameter

Layout number tool
One of 3 saved tool layouts.

Transformation value variable
A point variable containing X,Y,Z, and O,A,T data for tool shifts and rotations

Value
1

2
3

4 – values reserved for the program tool calls

Explanation

If a value from 1 to 3 is specified as a parameter, the coordinates of the

transformation of the tool's coordinate system are set to values stored in the
robot's memory. The value is reserved for the TOOL system called from within and
is specified as a point variable. The zero coordinate system of the tool has a center

on the tool mounting flange and the axes are parallel to the axis of the last
kinematic pair of the robot. During system initialization, the coordinates of the tool

transformation are automatically set to zero.
After the robot moves to the setting defined by the transformation coordinates or
by manual control in the base system or the coordinate system of the tools, the

system automatically calculates the position of the robot taking into account the
entered coordinates of the tool transformation.

Parameter 4 is defined for the situation when the TOOL system data is downloaded
from the robot program:

POINT T1 = TRANS(0,0,100,0,0,0)

TOOL T1

Example

>TOOL 1 ↵ Changes the position of the tool's coordinate system to the position

specified in the TOOL tab.

ASTORINO Manual AS language

47

JMOVE position variable

LMOVE position variable

Function

Movement of the robot to a specific position.
JMOVE: Motion with joint interpolation.

LMOVE: Motion with linear interpolation.

Parameter

Position variable

Specifies the target position of the robot.

Explanation

The JMOVE instruction causes the robot to move with joint interpolation. The robot

moves in such a way that the ratio of the distance travelled to the total distance
remains equal for all axes, throughout the duration of the movement, from the

starting position to the end position. When executing the LMOVE instruction, the
robot moves with linear interpolation. The starting point of the tool's coordinate
system (TCP) moves along a linear path.

Example

JMOVE #pick - Movement with axial interpolation to the position determined by
the displacement values of the "#pick" axis.

LMOVE P1 Motion with linear interpolation to a position determined by the
coordinates of the transformation P1.

LMOVE #pick Motion with linear interpolation to the position determined by the
values of the "#pick" axis offsets.

XMOVE position variable TILL signal number

Function

Movement of the robot to a certain position until the receipt of a signal is met.

Parameter

Position variable

Specifies the target position of the robot.
Signal number

Explanation

The JMOVE instruction causes the robot to move with axial interpolation. The robot
moves in such a way that the ratio of the distance travelled to the total distance
remains equal for all axes, throughout the duration of the movement, from the

starting position to the end position. When executing the LMOVE instruction, the
robot moves with linear interpolation. The starting point of the tool's coordinate

system (TCP) moves along a linear path.

ASTORINO Manual AS language

48

Example

JMOVE #pick - Movement with axial interpolation to the position determined by
the displacement values of the "#pick" axis.

LMOVE P1 Motion with linear interpolation to a position determined by the
coordinates of the transformation P1.
LMOVE #pick Motion with linear interpolation to the position determined by the

values of the "#pick" axis offsets.

DELAY time

Function

It stops the movement of the robot for a specified period of time.

Parameter

Time - Specifies in seconds the time to stop the robot's movement.

Explanation

In AS, the DELAY instruction is treated as a motion instruction that "does not
change position".
Even if the robot's movement is stopped by the DELAY instruction, all program

steps before the next motion statement are performed before stopping.

Example

DELAY 2.5 Stops the robot movement for 2.5 seconds.

JAPPRO position variable, distance

LAPPRO variable position , distance

Function

Movement in the direction of the Z-axis of the tool at a given distance from the

learned position.
JAPPRO: Joint interpolation motion.
LAPPRO: Motion with linear interpolation.

Parameter

Position variable
Specifies the end position (in transformation values or axis shift values).

Distance
Specifies the distance (in millimeters) between the end position and the actual

position obtained by the robot in the direction of the Z-axis of the tool's coordinate
system. If the specified distance is positive, the robot moves in the negative
direction of the Z tool axis.

Explanation

In these commands, the tool is oriented in a specific position, and the position is
set at a specified distance from the given position in the direction of the Z-axis of

the tool's coordinate system.

ASTORINO Manual AS language

49

Example

JAPPRO place,100
Movement with joint interpolation to the position 100 mm from the "place"

position, in the direction of the Z axis of the tool coordinate system. The position
"place" is given using the coordinates of the transformation.

LAPPRO place, offset
Motion with linear interpolation to a position away from the "place" position, given

by the coordinates of the transformation, by the distance specified by the variable
"offset", in the direction of the Z-axis of the tool's coordinate system.

BRAKE

Function

Stops the robot motion

JDEPART distance

LDEPART distance

Function

Movement of the robot to a position away from the current position by a specified
distance, along the Z-axis of the tool's coordinate system.

JDEPART: Motion with joint interpolation.
LDEPART : Motion with linear interpolation.

Parameter

Distance
Specifies the distance, in millimeters, between the current position and the target

position in the direction of the Z-axis of the tool's coordinate system. If the
specified distance is positive, the robot moves "backwards", or in other words, in

the direction of the negative values of the Z tool axis.

Example

JDEPART 80

Robot movement with joint interpolation back by 80 mm in the direction of the −Z
axis of the tool coordinate system.

LDEPART 2∗offset

Robot movement with linear interpolation, at a distance of 2∗offset (200 mm if

offset = 100) in the direction of the axis − Z of the tool's coordinate system.

ASTORINO Manual AS language

50

HOME

Function

Movement with joint interpolation to a position defined as HOME.

Example

HOME Movement with joint interpolation to the home position
specified by the SETHOME command/instruction or in the
astorino or astorinoIDE software.

DRIVE axis number, offset, speed

Function

Movement of one robot axis.

Parameter

Axis number
The number of the axis to be moved. (For robots equipped with six axes, they are
numbered from 1 to 6, starting with the axis furthest from the tool mounting

flange.)
Offset

The amount of axis displacements, given as a positive or negative value.
This value is expressed in the same units as the description of the position of the
axis, i.e. if the axis is a rotary axis, this value is expressed in degrees (°), and if

the axis is a traverse axis, this value is expressed in a unit of distance (mm).
Speed

Speed of movement. As with the standard movement speed, it is expressed as a
percentage of the maximum speed.

Explanation

This instruction moves only one axis.
The monitoring speed of this manual is the combination of the speed given in this

manual and monitoring speeds. The program speed set in the program does not
affect this statement.

Example

DRIVE 2,-10.75 Offset axis 2 (JT2) from its current position by −10° with
a speed of 75%.

ASTORINO Manual AS language

51

DRAW X offset, Y offset, Z travel, X rotation, Y rotation, Z rotation

TDRAW X travel, Y travel, Z travel, X rotation, Y rotation, Z rotation

Function

Movement of the robot with linear interpolation, at a specific speed, from the
current position to a given distance in the direction of the X, Y, Z axis and rotation

by a given angle around each axis. The DRAW statement moves the robot in the
global coordinate system, and the TDRAW statement moves the robot in the
coordinate system of the tool.

Parameter

X offset

The amount of the X-axis offset expressed in mm. If this parameter is not specified,
a value of 0 mm is entered.
Y offset

The amount of displacement in the Y axis expressed in mm. If this parameter is
not specified, a value of 0 mm is entered.

Z offset
The amount of displacement in the Z axis expressed in mm. If this parameter is
not specified, the value 0 mm is entered.

Rotation around X
The angle of rotation about the X axis, expressed in degrees. The permissible range

of values is less than ±180°. If this parameter is not specified, the value of 0
degrees is assumed.
Rotation around Y

The angle of rotation about the Y axis expressed in degrees. The permissible range
of values is less than ±180°. If this parameter is not specified, the value of 0

degrees is assumed.
Rotation around Z
The angle of rotation about the Z axis expressed in degrees. The permissible range

of values is less than ±180°. If this parameter is not specified, the value of 0
degrees is assumed.

Explanation

The robot moves in a linear motion from the current position to the set position.

Example

DRAW 50,0,-30 Robot movement with linear interpolation of 50 mm in

the direction of the X axis and by –30 mm in the direction
of the Z axis of the global coordinate system.

TDRAW 0,0,50 Robot movement with linear interpolation of 50 mm in

the direction of the tool Z-axis.

ASTORINO Manual AS language

52

C1MOVE position variable

C2MOVE position variable

Function

Movement of the robot to a specific position with circular interpolation.

Parameter

Position variable

Specifies the target position of the robot's movement. (Can be expressed in
transformation coordinates, complex transformation values, joint values, or

position functions)

Explanation

The C1MOVE instruction moves the robot to a point halfway on the circular path,
and the C2MOVE instruction moves to the end of the circular path.
To move the robot with circular interpolation, it is necessary to learn three

positions. These three items are different for C1MOVE and C2MOVE.

1. Position from the last movement instruction or current position.
2. The position that will be used as the parameter of the C1MOVE statement.
3. The position of the next C2MOVE movement instruction.

ASTORINO Manual AS language

53

ALIGN

Function

Moves the robot that the Z-axis of the tool's coordinate system so that it is

parallel to the nearest axis of the base coordinates.

Explanation

If you want the direction of movement to be aligned along the Z direction of the

tool, the DO ALIGN function allows you to easily align the direction of the tool

to the base coordinates before training the points.

ASTORINO Manual AS language

54

11.2 MOVEMENT INSTRUCTIONS IN COOPERATION WITH

THE CONVEYOR BELT

CVLMOVE Linear motion in cooperation with conveyor belt

CVLAPPRO Approaches the target point linearly in cooperation with the

conveyor belt

CVLDEPART Leaves the current position linearly in cooperation with the

conveyor belt

CVDELAY Stops the movement of the robot for a specified period of time

in cooperation with the conveyor belt

CVWAIT Stops the robot until the conveyor reaches the set value

CVRESET Overwrites the current position of the conveyor belt

CVPOS Reads the current position of the conveyor 1

CVPOS2 Reads current position of the conveyor 2

CVCOOPJT Turns on robot cooperation with conveyor 1 or 2

ASTORINO Manual AS language

55

CVLMOVE position variable

Function

The movement of the robot to a specific position in linear interpolation with

synchronization with the conveyor.

Parameter

Position variable

Specifies the target position of the robot's movement. (It can be in transformation

values, composite transformation values, or joint values.)

Explanation

TCP follows a linear trajectory from the start to the end position, synchronizing

with the conveyor.

Example

CVLMOVE #pick Linear motion to the defined by the values of the joints

angles (#pick) during synchronization with the conveyor.

CVLMOVE Place Linear motion to the position defined by the

transformation variable "place" when synchronizing

with the conveyor.

CVLAPPRO position variable, distance

Function

Movement in linear interpolation to a specified distance from a certain position,

synchronizing with the conveyor.

Parameter

Position variable

Specifies the target position (in transformation values or axis angles)

Distance

Determines the distance in the direction of the tool's Z axis between the target

position specified above and the position that the robot actually achieves. (Unit:

mm)

Providing a positive distance value moves the robot away from the target

position (negative direction of the tool's Z-axis). Entering a negative value

moves the robot towards the target position (positive direction of the tool's Z-

axis).

Explanation

In this manual, the orientation of the tool in the position in which the robot

actually reaches is determined by the position variable given. The position of the

ASTORINO Manual AS language

56

tool becomes a position away from the specified position by a specified distance

in the positive or negative direction of the Z axis of the tool.

Example

CVLAPPRO Place,100 The robot synchronizes with the conveyor and moves

in linear interpolation to a position 100 mm away in

the direction of the tool Z axis from the defined by the

values of the "Place" transformation.

CVLDEPART distance

Function

Movement in linear interpolation to a specified distance from the current position,

synchronizing with the conveyor.

Parameter

Distance

Determines the distance in the direction of the tool's Z axis between the current

position and the position that the robot actually achieves. (Unit: mm)

Providing a positive distance value moves the robot away from its current

position (negative direction of the tool's Z-axis). Entering a negative value

moves the robot towards the current position (positive direction of the Z axis of

the tool).

Explanation

In this manual, the orientation of the tool in the position in which the robot

actually reaches is determined by the current position of the robot. The position

of the tool becomes a position away from the current position by a specified

distance in the positive or negative direction of the tool Z-axis.

Example

CVLDEPART 100 The robot synchronizes with the conveyor and moves in

linear interpolation to a position 100 mm away in the

direction of the Z-axis of the tool from the current

position.

ASTORINO Manual AS language

57

CVDELAY time

Function

It "stops" the movement of the robot as seen from the conveyor reference view

point for a specified period of time.

Parameter

Time

Specifies the amount of time during which the robot must remain "still" as seen

from the conveyor's perspective (Unit: seconds)

Explanation

The CVDELAY instruction is a robot movement instruction. After following this

instruction, the movement of the robot is controlled so as to maintain the same

position relative to the moving conveyor, and therefore, when viewed from the

conveyor side, the robot seems to stop. (Looking from externally, the robot

moves in accordance with the conveyor, so that the same position is maintained

in relation to the workpiece/workpiece on the conveyor).

Example

CVDELAY 2.5 The robot remains stationary for 2.5 seconds from the

conveyor's perspective.

CVWAIT starting position

Function

Pauses the execution of the program until the conveyor reaches the specified

position. (Unit: mm) .

Parameter

Starting position

The robot starts again when the conveyor reaches this position.

Explanation

When this instruction is executed in the program, the robot stops and waits

(does not perform the next step in the program) until the conveyor reaches the

specified position. The robot resumes work when the conveyor reaches a certain

position.

Example

CVWAIT 50 Further execution of the program is suspended until the

50mm conveyor belt position is reached.

ASTORINO Manual AS language

58

CVRESET axis number

Function

Resets the position value of the currently cooperating conveyor belt.

Parameter

Axis number

Specifies the conveyor number (axis number) which needs to be reset. This

function overwrites the value of conveyor to 0. Possible parameter values are 8

(conveyor 1) and 9 (conveyor 2)

Explanation

The CVRESET statement resets the value of a specified conveyor

Example

CVRESET 8 Resets the Conveyor 1 to 0mm

CVPOS

Function

Assigns the current position of the first conveyor to a variable.

Example

CONV1 = CVPOS Assigns to the variable CONV1 the current value of the

position of the first conveyor

CVPOS2

Function

Assigns the current position of the second conveyor to a variable.

Example

CONV2 = CVPOS2 Assigns to the variable CONV2 the current value of the

position of the second conveyor

CVCOOPJT axis number

Function

Enables the robot to cooperate with the conveyor belt.

Parameter

Axis number

Specifies which robot conveyor belt is currently to work with. Possible values 8

and 9

ASTORINO Manual AS language

59

Explanation

If the function has not been used, the robot cooperates with conveyor number

one.

Example

CVCOOPJT 8 Activates the cooperation of the robot with the first

conveyor

ASTORINO Manual AS language

60

11.3 SPEED AND ACCURACY CONTROL INSTRUCTIONS

SPEED Sets the speed of movement (program speed)

ACCEL Sets acceleration

DECEL Sets the deceleration

ASTORINO Manual AS language

61

SPEED speed

SPEED speed ALWAYS

Function

Determines the speed of the robot's movement.

Parameter

Speed
Specifies the speed of the program. It is usually given as a percentage between

0.01 and 100 (%). You can also specify an absolute value by adding units: MM/S
ALWAYS
The speed will apply to each subsequent motion command until the next SPEED

command

Explanation

The actual robot movement speed is the product of the monitoring speed and the
motion speed set with this instruction (monitoring speed x program speed).

Nevertheless, full speed cannot be guaranteed in the following cases:
1. if the distance between two learned positions is too small

2. If a linear interpolation movement that exceeds max. angular velocity of the
axis.

The speed of motion is determined differently in motion with joint interpolation
and motion with linear interpolation. In the case of joint interpolation, the speed
of movement is defined as a percentage of the maximum speed of each axis. In

linear interpolation motion, the speed of motion is defined as a percentage of the
maximum speed at the starting point of the tool's coordinate system. If the speed

is given in a unit distance per unit of time, the linear motion velocity at the starting
point of the tool's coordinate system is configured. When moving with axial
interpolation, the speed is set as a percentage. (Even if the speed is set as an

absolute value or movement time, the robot will not move at this speed. The speed
will be processed as a percentage of the maximum speed.)

The absolute speed is expressed in mm/s. A decrease in monitoring speed shall
result in a proportional reduction in these speeds.

Example

If the speed is set as given below and the monitoring speed is 100%:
SPEED 50 Sets the speed of the next movement to 50 % of the maximum

speed.

SPEED 100 Sets the speed of the next movement to 100 % of the
 maximum speed.

Even if the product of the program speed and the speed set by

the SPEED command exceeds 100%, the actual speed of the

movement does not exceed 100%.

WARNING

ASTORINO Manual AS language

62

SPEED 200 Sets the speed of the subsequent movement to
100 % of the maximum speed (a speed exceeding
100 % is read as 100 %).

SPEED 20 MM/S The starting point speed of the tool coordinate

system (TCP) is set to 20 mm/sec (if the
monitoring speed is 100 %).

SPEED 100 MM/S ALWAYS The starting point speed of the tool coordinate
system (TCP) is set to 100 mm/sec (if the

monitoring speed is 100 %), any movement after
this command will be performed at a speed of 100
MM/s or adequate for the junction movements.

ACCEL value

ACCEL value ALWAYS

DECEL value

DECEL value ALWAYS

Function

Sets the acceleration (or deceleration) of the robot's movement.

Parameter

Value
Sets the acceleration or deceleration of the robot's movement as a percentage of
maximum acceleration. The acceptable range of values is from 0.01 to 100. Values

outside this range are treated as 100, and values below the range are treated as
0.01.

ALWAYS
The set acceleration/deceleration will apply to each subsequent motion command
until the next ACCEL/DECEL command

Explanation

The ACCEL manual sets the acceleration at the moment of starting the robot's
movement as a percentage of the maximum acceleration. The DECEL manual sets
the deceleration at the end of the robot movement as a percentage of maximum

deceleration.

Example

ACCEL 80 ALWAYS Acceleration is set to 80% for all movements following

this instruction.

DECEL 50 The deceleration for subsequent driving instructions is
set to 50%.

ASTORINO Manual AS language

63

11.4 PROGRAM CONTROL INSTRUCTIONS

TWAIT Pauses the execution of the program until the specified time

has elapsed

CALL Calls a subroutine

RETURN Comes out of a subroutine

ASTORINO Manual AS language

64

TWAIT time

Function

Pauses the program until the specified amount of time has elapsed.

Parameter

Time

Specifies the time in seconds to suspend program execution.

Explanation

This instruction suspends the execution of the program until the specified time has

elapsed.

Example

TWAIT 0.5 Wait for 0.5 seconds.

TWAIT delta Wait until the time specified by the variable "delta"

has elapsed.

CALL program name

Function

Pauses the current program and jumps to the new program (subroutine). When

the execution of the subroutine is complete, processing returns to the original

program and follows the step of the CALL statement.

Parameters

Name of the program

Specifies the name of the subroutine to be invoked

Explanation

This statement temporarily pauses the execution of the current program and jumps

to the first step of the specified subroutine.

Example:

CALL INIT

In the astorino robot, it is possible to nest the program up to

a maximum of 5 degrees.

You cannot CALL parent programs, recursion is not

allowed

WARNING

ASTORINO Manual AS language

65

RETURN

Function

Completes the execution of the subroutine and returns to the step after the CALL

statement in the program that called the subroutine.

Explanation

This statement completes the subroutine and returns to the program that called

the subroutine. If the subroutine is not called from another program (for

example, if the subroutine is executed by the EXECUTE command), the program

will exit.

At the end of the subroutine, the execution of the program reverts to the original

program, even if no RETURN statement exists. However, the RETURN statement

should be written as the last subroutine statement (or wherever you want the

subroutine to end).

ASTORINO Manual AS language

66

11.5 PROGRAM STRUCTURE INSTRUCTIONS

IF...... THEN... ELSE...... END

WHILE...... DO...... END

DO...... UNTIL

FOR...... END

CASE... OF VALUE ... ANY END

ASTORINO Manual AS language

67

IF Logical expression THEN

Program instructions(1)

ELSE

Program Instructions(2)

END

Function

Performs one of the groups of program steps, depending on the value of the logical
expression.

Parameter

Logical expression
A logical expression or expression based on real values. This expression returns
True (1) or False (0).

Program Instructions (1)
Program instructions executed if the logical expression has a Boolean value of

TRUE.
Program Instructions (2)
Program instructions executed if the logical expression has a Boolean value of

FALSE.

Explanation

This statement executes one of two groups of statements, depending on the value

of the logical expression. Here's how to do it:
1. Calculate the value of the logical expression and go to step 4 if the expression

is 0 (FALSE).
2. Calculate the value of the logical expression and proceed to execute the program
statement (1) if the expression is set to 1 (TRUE).

3. Go to 5.
4. If there is an ELSE statement, follow the program instructions (2).

5. Continue the program from the step after the keyword END.

1. The ELSE and END statements must be the only keywords in

the lines in which they are located.

2. The IF... THEN must end with the keyword END.

WARNING

ASTORINO Manual AS language

68

Example

In the example program below, if n is greater than 5, the program speed is set to
10%, and if not, then to 20%.

IF n>5 THEN

 sp=10
ELSE
 sp=20

END
SPEED sp

The program below first checks the value of the variable "m". If the variable "m"
is different from 0, the program checks the external input signal 1001 and displays

the corresponding message, depending on the status of this signal. In this
example, the external IF structure does not have an ELSE statement.

IF m THEN
 IF SIG(1001) THEN

 PRINT 1.0
 ELSE

 PRINT 0.0
 END

END

WHILE condition DO

Program instructions

END

Function

If the specified condition is TRUE, the program instructions are executed. If the

condition is FALSE, the WHILE statement is omitted.

Parameter

Condition

A logical expression or expression based on real values. Checks what value the
expression is: TRUE (1) or FALSE (0).
Program instructions

The group of statements to be executed if the condition is TRUE.

Explanation

This structure repeats specific program steps all the time when the condition is
True. The following is the procedure for execution:
1. Calculate the value of the Boolean expression and go to step 4 if the expression

is 0 (FALSE).
2. Calculate the logical expression and execute the program instructions if the

expression has a value of 1 (TRUE).
3. Go to 1.
4. Continue the program from the step after the keyword END.

ASTORINO Manual AS language

69

Example

In the example below, the input signal 1001 is monitored and the movement of

the robot is stopped depending on its condition. If the signal coming from the parts
feeder changes to 0 (the feeder is empty), the robot stops and the execution
continues from step after the END statement (step 27 in this example).

If one of the feeders is empty when the WHILE structure starts (external signal
input = 0), no step of the structure is performed, and processing continues from

step after the word END.

WHILE SIG(1001) TO

 LMOVE P1
 TWAIT 1

 LMOVE part
END

DO

Program instructions

UNTIL logical expression

Function

Creates an iterative DO loop

Parameter

Program instructions
These statements are repeated all the time when the Boolean expression is FALSE.

Logical expression
A logical expression or expression based on real values. If this logical expression

changes the value to TRUE, the instructions inside the loop are no longer executed.

Explanation

This structure executes a group of program instructions if the specified condition

(logical expression) is FALSE.
Here's how to do it:

1. Follow the program instructions.
2. Check the value of the Boolean expression and if it is FALSE, repeat step 1.

Unlike DO statements, if the expression is FALSE, steps inside

the WHILE construct are not executed. When you use this

statement, the condition may change from TRUE to FALSE.

WARNING

ASTORINO Manual AS language

70

If the Boolean expression is TRUE, go to step 3.
3. Continue executing the program from the step after the UNTIL statement.
The execution of the DO structure is completed when the value of the logical

expression changes from FALSE to TRUE.

Example

In the example below, the DO construct performs the following task: the part is

lifted and transferred to the buffer. After filling the buffer, the binary input signal
"buffor" is switched on. Activating this signal forces the robot to stop and move on

to another task.

DO

 JMOVE get
 JMOVE put

UNTIL (SIG(buffer))

FOR control variable = initial value TO final value STEP step

Program instructions

END

Function

Repeat execution of program instructions.

Parameter

Control variable

This variable is set to the initial value at the very beginning and is then
incremented by 1 after each loop execution.

Initial value
Value or expression. Use this parameter to configure the initial value of the variable
that controls the loop.

Final value

Value or expression. This value is compared to the current value of the loop control
variable, and when it reaches this value, the loop exit occurs.

STEP

The step by which the control variable is changed

Unlike WHILE constructions, DO construction instructions are

always executed at least once. When the value of this

expression changes to TRUE, the loop is exited and the step

placed after the DO construct is moved.

The DO construction must always end with the UNTIL

keyword.

WARNING

ASTORINO Manual AS language

71

Explanation

This construction repeats the execution of program instructions between the
keywords FOR and END. The loop control variable is magnified by the specified

step value each time the loop is executed.

Here's how to do it:
1. Assign the initial value to the loop control variable.

2. Calculate the final value and the step value.
3. Compare the value of the loop control variable with the final value.

a. If the step value is positive and the loop control variable is greater than the final
value, go to step 7.
b. If the step value is negative and the loop control variable is less than the final

value, go to step 7.
Otherwise, go to step 4.

4. Follow the program instructions after the FOR keyword.
5. When you get to the END statement, add the step value to the loop control
variable.

6. Return to step 3.
7. Follow the program instructions after the END statement. (Control variable value

loop at the time of comparison in step 3 does not change.)

Example

The "pick" program picks up the part and places it in the "hole" position. The parts
are placed as shown in the figure below. (The pallet is placed parallel to the X and

Y axes of the global coordinate system, and the distance between the parts is 100
mm.)

FOR row = 1 TO maxrow

POINT hole = SHIFT (startpose BY(row-1) * 100, 0, 0)

FOR col = 1 TO maxcol

JMOVE pick

POINT hole = SHIFT (hole BY 0, 100, 0)

END

END

Each FOR keyword must have a corresponding END keyword. Note

that if the loop control variable is greater than the final value when

the values are first compared, none of the program instructions

between the FOR and END keywords will be executed.

WARNING

ASTORINO Manual AS language

72

CASE control variable OF

VALUE value 1,... :

Program instructions

VALUE value 2, value 3,... :

Program instructions

.

.

VALUE value n, ... :

Program instructions

ANY :

Program instructions

END

Function

Executes the program according to the specific value of the control variable

Parameter

Control variable
A variable or real value. Its value determines which VALUE case will run.

Explanation

This structure allows the program to choose from several groups and execute

instructions. It is a powerful tool in the AS language that provides a convenient

method that allows several alternatives in the program.

The procedure for implementation is as follows:

1. Checks the value of the control variable entered after the CASE statement.

2. It checks the VALUE steps and finds the first step which contains an equal

value of the value of the control variable.

3. Follows step-by-step instructions.

4. After executing the program instructions, it goes to the END statement.

5. Parameter ANY can be omitted

If there is no value that matches the control variable, executes the program

instructions under ANY statements. If there is no ANY statement and no value is

found, none of the steps in CASE will be performed.

ASTORINO Manual AS language

73

Example

The following program is executed according to these 3 cases:

1. If the value is an even number between 0 and 10

2. If the value is an odd number between 1 and 9

3. If the value is a number other than the above.

CASE x OF

VALUE 0,2,4,6,8,10:

PRINT "The number x is EVEN"

VALUE 1,3,5,7,9:

PRINT "The number x is ODD"

ANY :

PRINT "The number x is larger than 10"

END

ASTORINO Manual AS language

74

11.6 INSTRUCTIONS FOR BINARY SIGNALS

SWAIT Hangs the program until the specified signal state condition is

set

ASTORINO Manual AS language

75

SWAIT signal number

Function

Waits until the specified external input signal or internal signal has the desired
state.

Parameter

Signal number
The number of the external input signal or internal signal to be monitored.
A negative number means that the condition is met if the signal is off.

Acceptable signal numbers

External input signals 1001-1008
Signals MODBUS 1009-1056

Signals on axis arm JT3 1057-1058 (Robot version B)
Internal signals 2001−2016

Example

SWAIT 1001 Expects external first input signal to be turned on.

SWAIT -2001 Waiting for the internal signal 2001 to be switched off.

ASTORINO Manual AS language

76

12 FUNCTIONS

This chapter describes the functions used in AS. These functions are
typically used in conjunction with on-screen commands and program

instructions. The following is the format of the function. The keyword

specifies the function, and the parameters entered in parentheses specify
the values on which the function operates.

Example

 Keyword Parameter

SIG signal number

 The keyword and parameter must be separated by a space.

ASTORINO Manual AS language

77

12.1 FUNCTIONS THAT OPERATE ON REAL VALUES

SIG Performs a logical AND operation on the specified signal

BITS Returns the bit pattern of the signal (up to 16 signals).

DISTANCE Returns the distance between two points

DEXT Returns the specified point component

DX,DY,DZ Returns the displacement value (X,Y,Z)

TRUE Returns logical one (1.0)

FALSE Returns logical zero (0.0)

VAL Returns the numeric value from the string variable

INT Returns the integer portion of the specified number

EXISTREAL Returns whether a given numeric variable exists

EXISTJOINT Returns whether a given position connector variable exists

EXISTTRANS Returns whether a given transformation variable exists

EXISTCOM Returns whether there is data to read from serial

communication buffer (Serial)

INRANGE Returns whether a position is within working range

ROUND Returns the rounded value of a number

ASTORINO Manual AS language

78

SIG (signal number)

Function

Performs a logical AND operation on the specified signal.

Parameter

Signal number

Numbers of external or internal input signals.

Explanation

Performs a logical AND operation on the specified signal and returns the resulting

value. If the signal is Boolean TRUE, it returns Boolean 1 (True). Otherwise, 0
(FALSE) is returned. External or internal input signals are specified by the

corresponding numbers as shown below.
Acceptable signal numbers

External input signals 1001 – 1008
Signals MODBUS 1009-1056

Signals on axis arm JT3 1057-1058 (Robot version B)
Internal signals 2001−2016

Positive number signals are assumed to be TRUE when ON, while negative number
signals are TRUE when OFF.

Example

If the binary input signal 1001=ON, 1004=ON, 2004=OFF, then:

SIG(1001) == TRUE
SIG(2004) == FALSE
SIG(−1004) == FALSE

BITS (Starting Signal Number, Number of Signals)

Function

Reads consecutive binary signals and returns the decimal value corresponding to
the bit patterns of the specified binary signals.

Parameter

Starting signal number
Specifies the first signal to read.

Number of signals
Specifies the number of signals to read. The maximum accepted number is 16.

Explanation
This function returns the decimal value corresponding to the bit pattern of the
specified signals.

In binary expression of the value returned by this function, the least significant bit
corresponds to the initial number of the signal.

ASTORINO Manual AS language

79

Acceptable signal numbers

External output signal 1 - actual number of signals

External input signal 1001 - actual number of signals

Internal signal 2001-2016

Example

If the signal states are as follows, the result of the following expression will be 5.

x = BITS(1003.4)

The logical values of the 4 signals starting with 1003 (i.e. 1003, 1004, 1005 and

1006) are read as Bit pattern 0101 or 5 in decimal notation.

Signals: 1008 1007 1006 1005 1004 1003 1002 1001

Status: 1 1 0 1 0 1 0 0

DISTANCE (pose 1, pose 2)

Function

Calculates the distance between two items, which are expressed in transformation

values.

Parameter

Pose 1, Pose 2

Specifies the names of the two transform value variables for which you want to
calculate the distance between them.

Explanation

Returns the distance between two positions in millimeters. (Both items can be
entered in any order)

Example

k=DISTANCE(HERE,part)
Calculates the distance between the current TCP and the "part" orientation and

converts the result to k.

DEXT (position variable, item number)

Function

Returns the specified item of the specified item.

Parameter

Position variable
Specifies the name of the pose variable defined by transformation values or

junction values.

ASTORINO Manual AS language

80

Item number

Specifies the element to be returned in real numbers, as shown in the following
figure.

Item number Position

Transformation values Axis values

1 X JT1

2 Y JT2

3 Z JT3

4 O JT4

5 A JT5

6 T JT6

7 JT7 JT7

Example
If the transformation values for "aa" are (0, 0, 0, -160, 0, 0, 300), then using this
function:

type DEXT(aa, 7)

It will print in the 300 terminal the value of JT7 of this point.

DX (pose)

DY (pose)

DZ (pose)

Function

Returns the transformation values (X, Y, Z) of a position defined by the specified

position variable.

Parameter

Pose
Specifies the name of the transformation value variable whose X, Y, or Z

component is required.

Explanation

Each of these three functions returns the X, Y, or Z component of the specified
position.

Each component of transformation values can also be obtained by using the
DECOMPOSE statement. The O, A, and T values are obtained using the

DECOMPOSE statement.

ASTORINO Manual AS language

81

Example

If "start" has transformation values:

X Y Z O A T

125.00 250.00 -50.0 135.00 50.00 75.00

This:

x=DX(start) DX returns x = 125.00
y=DY(start) DY returns y = 250.00
z=DZ(start) The function returns z = -50.00

TRUE

Function

Returns logical one (1.0)

Explanation

This function is convenient when you need to specify a logical condition TRUE.

FALSE

Function

Returns logical zero (0.0)

Explanation

This function is convenient when you need to specify a logical condition FALSE.

VAL ($string variable)

Function

Returns the actual value in the specified string.

Parameter

$String variable
Specifies a string, string variable, or string expression.

Example

DATA = VAL("123") Returns the actual value of 123.

INT (numeric expression)

Function

Returns the integer of the specified numeric expression.

Parameter

Numeric expression

Number or variable

ASTORINO Manual AS language

82

Explanation
Returns an integer (that is, the left side of a decimal point)
A negative sign remains with an integer unless an integer is 0.

Example

INT(0.123) Returns 0.
INT(10.8) Returns 10.

INT(-5.462) -5 is returned.

EXISTREAL (real variable)

Function

Checks whether the specified variable exists.

Parameter

Real variable
Specifies a string actual variable.

Explanation

If the variable name exists, it returns 1. If it does not exist, returns 0.

Example

ret=EXISTREAL(pp) If there is a real variable pp, ret=-1. If not, ret=0.

EXISTJOINT (variable connector name)

Function

Checks whether the specified connector variable exists.

Parameter

Variable connector name
Specifies the name of the connector displacement variable as a string. Start the

name with the # sign.

Explanation

If the variable exists, it returns 1. If it does not exist, returns 0.

Example

ret=EXISTJOINT("#pos") If there is a variable #pos, ret= 1. If not,
ret=0.

ASTORINO Manual AS language

83

EXISTTRANS (transformation value variable)

Function

Checks whether the specified variable is defined by transformation values.

Parameter

Transformation value variable
Specifies the name of the transform value variable as a string.

Explanation
If the variable exists, it returns 1. If it does not exist, returns 0.

Example

ret=EXISTTRANS(pos1) If the value variable of the pos1
transformation defined by the
transformation then the values exist, ret=1.

If not, ret=0.

EXISTCOM

Function

Checks for input in the serial communication buffer.

Explanation

If there is input in the serial communication buffer, TRUE (1.0) is returned, if the
data does not exist, FALSE (0.0) is returned. The function is useful when the robot

has to wait for data received from an external device.

Example

WHILE (EXISTCOM == FALSE)

 TWAIT 0.1
END

The above example loops the program until the data enters the serial
communication buffer.

INRANGE (position variable)

Function

Checks if the position is within the robot's range of movement and returns a result-
dependent value (1.0 or 0.0).

Parameter

Position variable
Specifies which position to check.

ASTORINO Manual AS language

84

ROUND (numeric value)

Function

Returns a value rounded to the first decimal place.

Parameter

Numerical value

This value is rounded to the first decimal place.

Explanation

Returns a value rounded to the first decimal place of the value specified as a

parameter. When the specified value is a negative value, the value is rounded as
an absolute value, and then a negative character is added. The character of the

numeric value specified as a parameter remains unchanged unless the result is 0.

Example

ROUND (0.123) Returns 0.

ROUND (10.8) Returns 11.
ROUND (-5.462) Returns -5.
ROUND (-5. 662) Returns -6.

ASTORINO Manual AS language

85

12.2 MATHEMATICAL FUNCTIONS

ABS Returns the absolute value from a numeric expression.

SIN Returns the sine value of a numeric expression

COS Returns the cosine value of a numeric expression

ATAN2 Returns arctangents from a numeric expression

PI Returns PI

SQRT Returns the square root of a numeric expression

RANDOM Returns a random value from 0.0 to 1.0

ASTORINO Manual AS language

86

ABS(Value)

Function

Returns the absolute value from a numeric expression.

Example

X = ABS(Y)

SIN(Value)

Function

Returns the sine value of a numeric expression

Example

X = SIN(Y)

COS(Value)

Function

Returns the cosine value of a numeric expression

Example

X = COS(Y)

ATAN2(value1, value2)

Function

Returns the arctangents value of a numeric expression

Explanation

Example

X = ATAN2(valueY,valueX)

ASTORINO Manual AS language

87

PI

Function

Returns PI

Example

D = 2*PI*R

SQRT(value)

Function

Returns the square root of a numeric expression

Example

X = SQRT(Y)

RANDOM

Function

Returns a pseudorandom value from 0.0 to 1.0

Example

X = RANDOM * 10

ASTORINO Manual AS language

88

12.3 STRING FUNCTIONS

$DECODE Extracts characters separated by specified characters (char).

$ENCODE Returns a string created from an actual value.

ASTORINO Manual AS language

89

$DECODE ($string variable, $separator)

Function

Extracts characters separated by specific characters

Parameter

$string variable

Specifies the string from which the characters are retrieved. Characters extracted

as a result of this function are removed from this string.

$separator

Specifies the character to read as a separator. (You can specify any character in

the ASCII array as a separator.)

All characters starting with the first character of the string variable to the

separator are returned. The returned string is removed from the string variable.

The separator is removed from the string variable.

Explanation

This function looks up the separator character in the specified string and extracts

the characters from the beginning of the string to the separator. Extracted

characters are returned as a result of the function, while being removed from the

original string.

Example

The following example breaks the variable of the string $TEMP into three

separate variables $VAL1, $VAL2 , $VAL3 so that $VAL1 = "123", $VAL2 =

"456", $VAL3 = "789". The VAL function then replaces these string variables

with the actual value type DATAX, DATAY, DATAZ. The numeric value data is

then used to create a TEST point

$TEMP = “123/456/789/”

$COMMAND = $DECODE($TEMP,"/")

$VAL1 = $DECODE($TEMP,"/")

$VAL2 = $DECODE($TEMP,"/")

$VAL3 = $DECODE($TEMP,"/")

DATAX = VAL($VAL1)

DATAY = VAL($VAL2)

DATAZ = VAL($VAL3)

POINT TEST = TRANS(DATAX,DATAY,DATAZ,180,0,90)

LMOVE TEST

ASTORINO Manual AS language

90

$ENCODE (value)

Function

Returns a string based on the actual value. The string is created in the same way

as when you use the TYPE/PRINT command

Parameter

value

Numeric value

Explanation

This feature allows you to create strings in programs using the actual value.

Example

$output = $output + $ENCODE(count)

The value of the real variable "count" is converted to a string and added to the

end of "$output". The combined string is then replaced back in the "$output"

variable.

ASTORINO Manual AS language

91

12.4 SERIAL COMMUNICATION

Serial communication is used to transfer data between the robot and external

equipment such as microcontrollers (e.g. Arduino, ESP32), peripheral equipment

(e.g. OpenMV, sensors) or a PC or e.g. Raspberry PI.

Serial communication can also be used to exchange data between accessories

using other types of serial communication, such as RS232 and RS485, or

between an astorino robot and a PC. The table below shows the required

accessory equipment for data exchange.

RS232 UART (TTL) Converter 3.3V -> RS232

RS485 UART (TTL) Converter 3.3V -> RS485

PC UART (TTL) Converter 3.3V -> USB

Serial communication operates at 3.3V, please use 3.3V compatible

electronics or voltage level converters.

5V voltage can damage the main CPU chip!

REMARK

IOIOI

The parameters of serial communication are:

• Baudrate: 115200

• Dara size: 8

• Parity: None

• Handshake: OFF

[NOTE]

ASTORINO Manual AS language

92

12.5 SERIAL COMMUNICATION FUNCTIONS

SEND Sends data via serial communication (Serial/UART)

RECEIVE Receives data received from serial communication

(Serial/UART)

EXISTCOM Returns whether there is data to be read from serial

communication (Serial/UART)

ASTORINO Manual AS language

93

SEND $string variable

Function

It sends data through serial communication.

Explanation

When a function is called, data is sent via serial communication (Serial/UART)

Example

$data = "Hello"
SEND $data

RECEIVE

Function

Receives data received from serial communication (Serial/UART).

Explanation

When a function is called, the available data from the serial communication buffer
is retrieved. If there is no available data in the data buffer, a 5s Timeout is

activated, if no data appears in the buffer within 5 seconds of the function call,
the function returns an error and the program is stopped.

Example
$data = RECEIVE

The parameters of serial communication are:

• Baudrate: 115200

• Date size: 8

• Parity: None

• Handshake: OFF

[NOTE]

The parameters of serial communication are:

• Baudrate: 115200

• Date size: 8

• Parity: None

• Handshake: OFF

[NOTE]

ASTORINO Manual AS language

94

EXISTCOM

Function

Checks for input in the serial communication buffer.

Explanation

If there is input in the serial communication buffer, TRUE (1.0) is returned, if the
data does not exist, FALSE (0.0) is returned. The function is useful when the robot
has to wait for data received from an external device.

Example

WHILE (EXISTCOM == FALSE)

 TWAIT 0.1
END

The above example loops the program until the data enters the serial
communication buffer.

ASTORINO Manual AS language

95

12.6 TCP/IP AND UDP COMMUNICATION

TCP/IP and UDP communication is used to transfer data between the robot and

external equipment such as PLCs, operator panels, accessories such as sensors,

vision devices and PCs

The astorino robot can act as a server as well as a client in communication

SWITCH

NETWORK

ASTORINO Manual AS language

96

12.7 TCP/IP COMMUNICATION FUNCTIONS

TCP_ACCEPT Checks whether a connection request has been received

TCP_CLOSE Interrupts communication

TCP_CONNECT Creates a socket and sends a connection request

TCP_LISTEN Creates a socket and waits for connection requests

TCP_END_LISTEN Ends waiting for a connection request

TCP_SEND Sends a string of data

TCP_RECEIVE Receives a string of data

ASTORINO Manual AS language

97

TCP_ACCEPT return variable, port number

Function

Program instruction for checking the connection request (used by the server to

start the communication service).

Checks whether a connection request for robot communication has been received

through the specified port and, if so, establishes a connection. The connection is

set when this instruction completes normally. If a communication error occurs

during execution, an error code (-1.0) is returned.

It is possible to connect up to eight (8) clients to the astorino robot at the same

time.

Parameter

Return variable

Sets a variable that stores the results of the connection attempt. Stores the

socketID (0-7) of the connected client. If the connection attempt fails, a value

(-1.0) is returned.

The value -1.0 is returned when a communication error occurs. However, the

execution of the program does not stop at a communication error.

Port number

Specifies the port number that points to the channel at the other end of the

connection. The acceptable range is 8192 – 65535, otherwise an error will

occur.

Example:

WHILE socketID < 0 DO

TCP_ACCEPT socketID port

TWAIT 0.2

END

The above example loops the program until the client connects to the robot.

TCP_CLOSE return variable, port number

Function

Program instruction to terminate the connection (used to terminate the

communication service). Closes the connection for TCP/IP communication and

closes the port. If a communication error occurs, an error code (-1.0) is

returned, and the program does not stop.

Parameter

Return variable

ASTORINO Manual AS language

98

Sets a variable that stores the execution results.

0 is stored when execution is performed normally.

-1 when an error occurred in the execution of functions

Port number

Specifies the socketID that you receive as a result of TCP_ACCEPT or

TCP_CONNECT

Example

TCP_CLOSE .ret, socketID

TCP_CONNECT return variable, port number, IP address

Function

Program instruction for requesting a connection (used by the client to start the

communication service with the server) Creates a socket and connects to the

specified port number. Then, a connection request is sent to the specified node

and a connection is established. The node is determined by the IP address of the

server. If a communication error occurs during execution, -1.0 is returned and

program execution is not stopped.

Parameter

Return variable

Specifies a variable that stores the execution results. A value of 8 is returned

when execution is performed normally.

-1 is returned when an error occurs when you try to connect.

Port number

Specifies the port number that points to the channel at the other end of the

connection. The socket is associated with this port number.

The acceptable range is 8192 – 65535, otherwise an error will occur.

IP address

Specifies an array variable that stores the IP address of the server (32 bits)

The IP address is stored in 8-bit increments to each element of an array variable

in order from the beginning of the IP address.

ASTORINO Manual AS language

99

Example:

IP[1] = 192

IP[2] = 168

IP[3] = 0

IP[4] = 100

WHILE socketID < 0 DO

TCP_CONNECT socketID,port,IP[1]

TWAIT 0.2

END

The above example loops the program until the robot connects to the server.

TCP_LISTEN return variable, port number

Function

Program instruction to start waiting for a connection request (used by the server

to start the communication service) Creates a socket and binds it to a specific

port number and waits for a connection request to that socket. If a

communication error occurs during execution, -1.0 is returned and program

execution is not stopped.

Parameter

Return variable

Specifies a variable that stores the execution results.

A value of 0 is returned when execution is performed normally.

The value -1 is returned when an error occurs during execution.

Port number

Specifies the port number that points to the channel at the other end of the

connection. The socket is associated with this port number.

The acceptable range is 8192 – 65535, otherwise an error will occur.

Example:

TCP_LISTEN .ret, port

ASTORINO Manual AS language

100

TCP_END_LISTEN return variable, port number

Function

Program instructions for terminating the connection. Terminates waiting for a

connection request on the socket specified by the TCP_LISTEN and closes the

socket. If a communication error occurs, -1.0 is returned and the program does

not stop.

Parameter

Return variable

Specifies a variable that stores the execution results. A value of 0 is returned

when execution is performed normally. The value -1 is returned when an error

occurs at execution

Port number

Specifies the socket currently waiting for a connection request (the socket

specified in the TCP_LISTEN statement).

Example:

TCP_END_LISTEN .ret, port

TCP_SEND return variable, socketID, string $string variable

Function

Instruction of the program to send data. Sends data based on the TCP protocol.

The data to be sent is specified as string variables. If a communication error

occurs, -1.0 is returned and program execution does not stop.

Parameter

Return variable

Sets a variable that stores the execution results. A value of 0 is returned when

execution is performed normally. The value -1.0 is returned when an error occurs

during execution.

SocketID

Specifies the socket ID number obtained after executing a TCP_ACCEPT or

TCP_CONNECT statement.

$string variable

Specifies the string variable in which the data to be sent is stored. Elements of a

variable string are sent in order from first to last. Numeric data can be sent after

conversion to string format by using the $ENCODE function.

Example:

TCP_SEND .ret, socketID, $data

ASTORINO Manual AS language

101

TCP_RECV return variable, socketID, $string variable

Function

Program manual for receiving data. Receives data sent over TCP and stores it in

the specified string variable. If a communication error occurs, -1 is returned and

program execution does not stop.

Parameter

Return value

Specifies a variable that stores the execution results. A value of 0 is returned

when execution is performed normally. The value -1.0 is returned when an error

occurs during execution.

socketID

Specifies the socket ID number obtained after executing a TCP_ACCEPT or

TCP_CONNECT statement.

$string variable

Specifies the string variable in which the received data is stored. The data is

received as character data with a length of 1 byte each. When receiving numeric

data, you must convert it from a string variable to a numeric variable by using

the VAL function.

Example:

WHILE .ret < 0 TO

TCP_RECV .ret, socketID, $data

TWAIT 0.2

END

PRINT $data

The above example loops the program until it receives the data.

ASTORINO Manual AS language

102

12.8 TCP/IP SERVER EXAMPLE

In the following example, astorino acts as a TCP/IP communication server. In

order to test the operation of the program, the Hercules program from HW-

group.com was used

(https://www.hw-group.com/software/hercules-setup-utility)

Robot and Hercules settings

Program code executed by the robot:

.PROGRAM TCP1

 .ret = -1

 .ret2 = -1

 socketID= -1

 port = 8192

 $data = "Hello PC!"

 $data2 = ""

 TCP_LISTEN .ret, port

 WHILE socketID < 0 DO

 TCP_ACCEPT socketID, port

 TWAIT 0.2

 END

 TCP_SEND .ret, socketID, $data

 WHILE .ret2 < 0 DO

 TCP_RECV .ret2, socketID, $data2

 TWAIT 0.2

 END

 PRINT $data2

 TCP_CLOSE .ret,socketID

 TCP_END_LISTEN .ret, port

.END

https://www.hw-group.com/software/hercules-setup-utility

ASTORINO Manual AS language

103

Data sent from Hercules software:

Results of the above program:

View of the astorino software terminal View of the Hercules window

12.9 TCP/IP CLIENT EXAMPLE

In the following example, astorino acts as a TCP/IP communication client. In

order to test the operation of the program, the Hercules program from HW-

group.com was used

(https://www.hw-group.com/software/hercules-setup-utility)

Robot and Hercules settings

https://www.hw-group.com/software/hercules-setup-utility

ASTORINO Manual AS language

104

Program code executed by the robot:

.PROGRAM TCP

 .ret = -1

 .ret2 = -1

 socketID = -1

 port = 8192

 IP[1] = 192

 IP[2] = 168

 IP[3] = 0

 IP[4] = 100

 $data = "Hello PC"

 $data2 = ""

 WHILE socketID < 0 DO

 TCP_CONNECT socketID,port,IP[1]

 TWAIT 0.2

 END

 WHILE .ret< 0 DO

 TCP_SEND .ret, socketID, $data

 TWAIT 0.2

 END

 WHILE .ret2 < 0 DO

 TCP_RECV .ret2, socketID, $data2

 TWAIT 0.2

 END

 PRINT $data2

 TCP_CLOSE .ret,socketID

.END

Data sent from Hercules software:

Results of the above program:

View of the astorino software terminal View of the Hercules window

ASTORINO Manual AS language

105

12.10 UDP COMMUNICATION FUNCTIONS

UDP_SENDTO Sends specified string data over UDP/IP.

UDP_RECVFROM Receives and stores data in the specified string variable

via UDP/IP.

ASTORINO Manual AS language

106

UDP_SENDTO return variable, IP address, port number, $string

variable

Function

Sends a string of data over the UDP protocol. The data to be sent is specified in a

variable string. This statement creates a socket, sends data, and closes the

socket in a single sequence.

If a communication error occurs, -1 is returned and program execution does not

stop.

Parameter

Return variable

Specifies a variable that stores the execution results.

A value of 0 is returned when execution is performed normally.

The value -1.0 is returned when an error occurs during execution.

IP address

Specifies an array variable that stores the IP address of the server (32 bits)

The IP address is stored in 8-bit increments to each element of an array variable

in order from the beginning of the IP address.

Port number

Specifies the port number that points to the channel at the other end of the

connection. The socket is associated with this port number.

The acceptable range is 8192 - 65535, otherwise an error will occur.

$string variable

Specifies the string variable in which the data to be sent is stored. Elements of a

variable string are sent in order from the first to the last. Numeric data can be

sent after conversion to string format by using the $ENCODE function.

Example:

UDP_SENDTO .ret, IP[1],port,$data

The UDP_SENDTO function opens the socket on port 8192

[NOTE]

ASTORINO Manual AS language

107

UPD_RECVFROM return variable, IP address, port number, $string

variable

Function

Receives a string of data sent over the UDP protocol. The received data is saved

in a variable string. This statement creates a socket, sends data, and closes the

socket in a single sequence.

If a communication error occurs, -1 is returned and program execution does not

stop.

Parameter

Return variable

Specifies a variable that stores the execution results.

A value of 0 is returned when execution is performed normally.

The value -1.0 is returned when an error occurs during execution.

IP address

Specifies an array variable that stores the IP address of the server (32 bits)

The IP address is stored in 8-bit increments to each element of an array variable

in order from the beginning of the IP address.

Port number

Specifies the port number that points to the channel at the other end of the

connection. The socket is associated with this port number.

The acceptable range is 8192 - 65535, otherwise an error will occur.

$string variable

Specifies the string variable in which the data to be sent is stored. Elements of a

variable string are sent in order from the first to the last. Numeric data can be

sent after conversion to string format by using the $ENCODE function.

Example:

UDP_RECVFROM .ret,port, $data

ASTORINO Manual AS language

108

12.11 UDP EXAMPLE - SENDING DATA

In the following example, astorino acts as a sender of UDP data. In order to test

the operation of the program, the Hercules program from HW-group.com was

used

(https://www.hw-group.com/software/hercules-setup-utility)

Robot and Hercules settings

Program code executed by the robot:

.PROGRAM UDP2

 .ret = 0

 $data = "Hello PC!"

 IP[1] = 192 ;computer IP

 IP[2] = 168

 IP[3] = 0

 IP[4] = 100

 port = 8888 ;localport

 PRINT "SEDING DATA!"

 UDP_SENDTO .ret, IP[1],port,$data

.END

Results of the above program:

View of the astorino software terminal View of the Hercules window

https://www.hw-group.com/software/hercules-setup-utility

ASTORINO Manual AS language

109

12.12 UDP EXAMPLE - RECEIVING DATA

In the following example, astorino acts as a recipient of UDP data. In order to

test the operation of the program, the Hercules program from HW-group.com

was used

(https://www.hw-group.com/software/hercules-setup-utility)

Robot and Hercules settings

Program code executed by the robot:

.PROGRAM UDP

 port = 8192

 $data = ""

 .ret = -1

 WHILE .ret < 0 DO

 UDP_RECVFROM .ret,port, $data

 TWAIT 0.1

 END

 PRINT $data

.END

Data sent from Hercules software:

Results of the above program:

View of the astorino software terminal View of the Hercules window

https://www.hw-group.com/software/hercules-setup-utility

ASTORINO Manual AS language

110

12.13 COOPERATION WITH EXTERNAL ENCODER

In standard robot operations, the workpiece/workpiece remains stationary during

operation. The conveyor synchronization function allows operations on objects

moving on the conveyor belt.

Using the function of cooperation with an external encoder, the robot moves,

synchronizing its movement with a moving object on the conveyor belt. To

synchronize with the moving workpiece, the robot can use up to two external

incremental encoders.

Taking into account the sequence of movements and the flow of the program

should be avoided:

• movements that will cause going beyond the working range of the robot,

• unnecessary pause of work (stopping the robot while the object passes by

the robot)

Before using the synchronous conveyor function, the parameters of the

resolution and direction of movement of the conveyor belt must be set. Set the

data in the Astorino software.

ASTORINO Manual AS language

111

12.14 SUPPORTED ENCODERS

Astorino is able to handle up to two additional incremental encoders at the same

time.

The basic parameters of the supported encoders are:

• Operating voltage 24V,

• Signal outputs A and B,

• Recommended resolution of no more than 300 PPR (pulses per revolution),

• Outputs operating in PUSH-PULL configuration.

Output in PUSH-PULL configuration

Every encoder in the robot is connected on the M8 four-pole plug.

Entry No. 1 BROWN 2 WHITE 3 BLUE 4 BLACK

1 A B 24V GND

2 A B 24V GND

1 BROWN

2 WHITE

3 BLUE

4 BLACK

ASTORINO Manual AS language

112

12.15 EXAMPLE OF A CONVEYOR BELT APPLICATION

In the example below, the robot is equipped with a conveyor belt (1), a 24V

pulse encoder (2) and a proximity sensor (3). The encoder has been connected

to the input of the first encoder and the proximity sensor to the first input in the

24V I/O module. In order to clarify the diagram, the connection of the 24V IO

module with the robot is not shown. The following example assumes that the

conveyor has its own control and its movement matches the arrow in the

drawing.

In the above application, the user gives the workpieces (cubes) at the beginning

of the conveyor belt, when the sensor triggers, a point is saved, to which the

robot then goes and picks the detail at the same time synchronizing with the

conveyor belt. It then puts the items in a different location.

The first thing to do is to configure the conveyor setting in the robot settings. In

this example, the resolution is 0.1mm/bit and the direction is set to X-.

ASTORINO Manual AS language

113

Before starting, record the point where the workpiece is located at the time of

detection by the sensor (3) and the deposit point P1

In order for the above application to work properly, the workpieces should be

given in the same orientation and position on the conveyor belt (relative to the

width), this can be done by designing appropriate bumpers that will

automatically position the detail in the middle of the conveyor belt

P0

P1

ASTORINO Manual AS language

114

Example program:

.PROGRAM CONV

 SPEED 100 MM/S ALWAYS

 TOOL 1

 POINT PICK = P0 ;P0 saved point at sensor

 POINT PLACE = P1 ;P1 saved put away point

 HOME

 CVCOOPJT 8; synch with 1st conv

 CVRESET 8

 WHILE SIG(1002) == TRUE DO

 SWAIT 1001 ;wait conv sensor signal

 ENC = CVPOS

 POINT/8 PICK = ENC ;store current encoder value to PICK

 CVWAIT 50 ; wait till conv moved 50 mm

 CVLAPPRO PICK,50

 SPEED 50 MM/S

 CVLMOVE PICK ;move to PICK

 CVDELAY 0.5 ;wait above conv 0.5s

 SIGNAL 1 ;close gripper

 CVDELAY 1 ;wait above conv 1s

 CVLDEPART 50

 JAPPRO PLACE, 50

 SPEED 20 MM/S

 LMOVE PLACE

 TWAIT 0.5

 SIGNAL -1

 TWAIT 1

 LDEPART 50

 POINT PLACE = SHIFT(PLACE BY 0,-50,0)

 IF CVPOS > 5000 THEN

 CVRESET 8 ; reset encoder if too big

 END

 END

.END

ASTORINO Manual AS language

115

12.16 EXAMPLE OF A CONVEYOR BELT AND VISION

SYSTEM APPLICATION

In the example below, the robot is equipped with a conveyor belt (1), a 24V

pulse encoder (2), a proximity sensor (3) and a vision system (4). The encoder

was connected to the first encoder input, the proximity sensor to the first input

in the 24V I/O module, and the vision system to the Serial input in the robot

base. In order to clarify the diagram, the connection of the 24V IO module with

the robot is not shown. The following example assumes that the conveyor has its

own control and its movement matches the arrow in the drawing.

In the above application, the user puts workpieces (cubes) at the beginning of

the conveyor belt, when the sensor triggers, the camera is activated, which

detects the object on the conveyor belt and sends the coordinates to the robot. A

saved point is used to determine the location of the workpiece. The robot then

goes and picks up the cube while synchronizing with the conveyor belt. It then

puts the picked up items in a different location.

The first thing to do is to configure the conveyor setting in the robot settings. In

this example, the resolution is 0.1mm/bit and the direction is set to X-.

ASTORINO Manual AS language

116

Before starting, calibrate the camera according to the instructions of the vision

system and teach the P1 place point. It is also necessary, as in the previous

example, to reach the point P0 at any position of the conveyor belt so as to read

the coordinate Z of the intake position. Then enter it in the program in the line

POINT PICK = TRANS(dataX, dataY, height,0,0,0). In the example

program, the value is 100mm.

ASTORINO Manual AS language

117

. .PROGRAM CONV
 SPEED 100 MM/S ALWAYS

 TOOL 1

 POINT PLACE = P1 ;P1 saved put down point

 HOME

 CVCOOPJT 8; synch with 1st conv

 CVRESET 8

 WHILE SIG(1002) == TRUE DO

 SWAIT 1001 ;wait conv sensor signal

 SEND "T"

 WHILE EXISTCOM == false DO

 TWAIT 0.05

 END

 $temp = RECEIVE

 $temp2 = $DECODE($temp,"/")

 $temp3 = $DECODE($temp, "/")

 $temp4 = $DECODE($temp, "/")

 dataX = VAL($temp2)

 dataY = VAL($temp3)

 dataA = VAL($temp4)

 IF ((dataX <> 0) OR (dataY <> 0)) THEN

 POINT PICK = TRANS(dataX,dataY,100,0,0,0)

 POINT/OAT PICK = P0

 POINT PICK = PICK + RZ(dataA)

 ENC = CVPOS

 POINT/8 = ENC

 CVWAIT 100 ; wait till conv moved 50 mm

 SPEED 100 MM/S ALWAYS

 CVLAPPRO PICK, 40

 SPEED 40 MM/S ALWAYS

 CVLMOVE PICK ;move to PICK

 CVDELAY 0.5 ;wait above conv 0.5s

 SIGNAL 1 ;close gripper

 CVDELAY 1 ;wait above conv 1s

 CVLDEPART 50

 JAPPRO PLACE, 50

 SPEED 20 MM/S

 LMOVE PLACE

 TWAIT 0.5

 SIGNAL -1

 TWAIT 1

 LDEPART 50

 POINT PLACE = SHIFT(PLACE BY 0,-50,0)

 IF CVPOS > 5000 THEN

 CVRESET 8 ; reset encoder if too big

 END

 ELSE

 PRINT "No workpiece"

 CVRESET 8

 END

 END

.END

ASTORINO Manual AS language

118

13 SAMPLE PROGRAMS

This chapter provides sample programs in AS.

13.1 INITIAL CONFIGURATION OF PROGRAMS

Performing the following steps before using any robot functions makes

programming easier.

• Move the robot to the home position.

• Define the variables you need for each task. (e.g. for palletizing, enter the

number of items on the pallet)

• Initialize the counter, flag, etc.

• Set the coordinate system of the tool for the task at hand.

• Set the global coordinate system for the task.

The following is an example of a subroutine for initializing settings for the

palletizing job shown in the figure.

In the following example, items are palletized in order from (1) to (6). Enter the

initial settings listed below. The palette is positioned parallel to the robot's global

coordinate system.

TOOL 1 ;tool (1)

rowmax = 3 ; 3 rows

colmax = 2 ; 2 collums

xs = 100 ; X(ΔX=100mm).

ys = 150 ; Y(ΔY=150mm).

POINT put = start

HOME

ASTORINO Manual AS language

119

13.2 PALLETIZING

In the following example, items are picked from the feeder and placed on pallets

in three rows (at a distance of 110 mm) and four columns (at a distance of 90

mm). To simplify the example, both the palette and the objects on the palette are

aligned parallel to the XY plane in the robot's global coordinate system. The

procedure of synchronizing the feeder and the robot using external I/O signals

(SWAIT instructions, SIGNAL, etc.) was also omitted.

• The pallet is positioned parallel to the XY.

• Item #P0 (Item Feeder) and "P0" (where the first item is placed) must be

defined before the program can be executed.

ASTORINO Manual AS language

120

Sample program

.PROGRAM palletize

 ; initial settings (3 rows, 4 columns)

 ; span X=90, Y=110

 rowmax = 3

 colmax = 4

 xs = 90

 ys = 110

 gripper = 1 ; 1st signal - gripper

 SPEED 100 MM/S ALWAYS

 POINT put = P0

 SIGNAL –gripper ;open gripper

 ; Palletization start

 FOR row = 1 TO rowmax

 FOR col = 1 TO colmax

 JAPPRO #P0, 100

 SPEED 30

 LAPPRO #P0, 50

 SPEED 30 MM/S

 LMOVE #P0

 TWAIT 0.2

 SIGNAL gripper

 TWAIT 1

 LDEPART 200

 JAPPRO put, 200

 SPEED 30 MM/S

 LMOVE put

 TWAIT 0.2

 SIGNAL -gripper

 TWAIT 1

 LDEPART 200

 ;next place point calculation - row

 POINT put=SHIFT (put BY xs, 0, 0)

 END

 ;next place point calculation - column

 POINT put = SHIFT (P0 by 0, ys * row, 0)

 END

.END

ASTORINO Manual AS language

121

13.3 PICK&PLACE – AN EXAMPLE OF PALLETIZING

This program takes cubes from a single tower and then places them by the

number of rows, the number of columns and the number of levels.

You can customize:

• Item size (cubes)

• Distance between cubes,

• Number of rows, columns and levels,

ASTORINO Manual AS language

122

.PROGRAM PAL1

;-------------- Init ---------

deltaX = 60 ;distance between workpieces X

deltaY = 60 ;distance between workpieces Y

deltaZ = 30 ;layer height

numLev = 2

numRow = 1

numCol = 2

numPcs = numLev*numCol*numRow ;pieces count

height = 25 ;height of a workpiece (25 mm)

;-------------- variable init ---------

x = 0

y = 0

z = 1

SIGNAL -1

SPEED 100 mm/s always

POINT place = p2

POINT pick = P1

POINT pick = SHIFT(p1 BY 0,0,numPcs*height)

;P1 on the table, pick shifted by number of pieces in Z

HOME

LAPPRO pick, 40

;----------------------------------- Pal-----------------

FOR z = 0 TO (numLev-1)

 FOR y = 0 TO (numRow-1) ; rows in Y

 FOR x = 0 TO (numCol-1) ;col in X

 POINT pick = SHIFT(pick BY 0,0,-height);calc new pick pose

 JAPPRO pick,40

 speed 20 mm/s

 LMOVE pick

 TWAIT 0.5

 SIGNAL 1 ;close the gripper

 TWAIT 0.5

 LDEPART 50

 LMOVE P3

 POINT place = p2

 POINT place = SHIFT(p2 BY deltax*x,deltay*y,deltaz*z)

 LAPPRO place,30

 speed 20 mm/s

 LMOVE place

 TWAIT 0.5

 SIGNAL -1 ;open the gripper

 TWAIT 0.5

 LDEPART 30

 LMOVE P3

 END

 END

END

.END

ASTORINO Manual AS language

123

13.4 SAMPLE I/O PROGRAM

This sample program shows you how to use signals in many ways.

.PROGRAM IO

; ----- IO example program

; ----- Robot reads and sets IOs

 sensor = 1002 ;sets variable

 SWAIT 2001 ;wait until internal 1 signal is on

 SIGNAL 8 ;sets 8 output HIGH

 IF SIG(sensor) == TRUE THEN

 ;checks if sensor(2 input) is high

 SIGNAL 2002 ; sets 2 internal HIGH

 ELSE

 IF SIG(1001) == FALSE THEN

 SIGNAL -8 ;sets 1 output LOW

 END

 END

 BITS 1,4 = 12

 ;changes 12 to 4bit binary and sets that on out puts from 1

 data = BITS(1004,4) ;read binary data from inputs

 ;4 bit from 4th output and changes that to decimal

 PRINT data

.END

13.5 SAMPLE SERIAL COMMUNICATION PROGRAM

This example shows how to use serial communication. The program can

exchange data between the astorino robot and a PC (e.g. Matlab or

SerialTerminal) or microcontroller (e.g. Arduino or ESP32).

IOIOI

ASTORINO Manual AS language

124

.PROGRAM serial

; ----- Serial communication example program

; ----- Robot command frame form Serial Port

; ----- frames: P/ or L/x/y/z/

; ----- From X,Y,Z point is created

; ----- Sends current location if frame is P/

 SPEED 150 MM/S ALWAYS

 $S_FRAME = "XYZ"

 $S_FRAME2 = "JT"

 WHILE EXISTCOM == FALSE DO

 TWAIT 0.1

 END

 $TEMP = RECEIVE

 $COMMAND = $DECODE($TEMP,"/")

 PRINT $COMMAND

 ;RECEIVE DATA FROM SERIAL AND CREATE A POINT

 IF $COMMAND == "L" THEN

 $VAL1 = $DECODE($TEMP,"/")

 $VAL2 = $DECODE($TEMP,"/")

 $VAL3 = $DECODE($TEMP,"/")

 DATAX = VAL($VAL1)

 DATAY = VAL($VAL2)

 DATAZ = VAL($VAL3)

 POINT TEST = TRANS(DATAX,DATAY,DATAZ,)

 LMOVE TEST

 SEND "OK"

 END

 ;SEND CURRENT LOCATION TO SERIAL PORT

 IF $COMMAND == "P" THEN

 HERE TEMP

 HERE #TEMP

 DECOMPOSE TAB[0] = TEMP

 DECOMPOSE TAB2[0] = #TEMP

 FOR I = 0 TO 5

 TAB2[I] = TAB2[I]*180/PI

 $S_FRAME = $S_FRAME + $ENCODE(TAB[I]) + "/"

 $S_FRAME2 = $S_FRAME2 + $ENCODE(TAB2[I]) + "/"

 END

 SEND $S_FRAME

 SEND $S_FRAME2

 END

.END

Serial communication operates at 3.3V, please use 3.3V compatible

electronics or voltage level converters.

5V voltage can damage the main CPU chip!

REMARK

ASTORINO Manual AS language

125

14 MANUFACTURER INFORMATION

Kawasaki Robot
ASTORINO AS LANGUAGE INSTRUCTION

2023-05: 1st edition

Publication: KAWASAKI Robotics GmbH

Copyright © 2023 by KAWASAKI Robotics GmbH.

All rights reserved.

